PDF (4.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Research Article | Open Access

Titanium dioxide@polyoxometalate-organic framework as an efficient photocatalyst for dye degradation under visible light conditions

Hao Sun1,§Mei Wu2,§Danyang He1Yuan Luo1Wenhui Shang1Yan Jiang1Manyu Liu1Muling Zeng3 ()Nan Wang1 ()Zhiyu Jia1 ()
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
Institute of Materials Science of Barcelona, Campus de la UAB, 08193 Bellaterra, Spain

§Hao Sun and Mei Wu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The quality of the ecological environment is closely related to human health. Organic dyes emitted from textile industries, such as rhodamine B (RhB) and methylene blue (MB), pose a significant risk for illness in humans, thus shortening their life span. Photocatalysis is an effective and environment-friendly approach for the degradation of dyes. TiO2 has gained attention as a prospective photocatalyst since its initial use in single-crystal electrodes for water photolysis. However, its wide band gap substantially hampers its photocatalytic rate. Thus, to reduce the band gap and the recombination rates of electron–hole pairs, we incorporated TiO2 into polyoxometalate-organic frameworks (POMOFs), specifically {[Ni6(OH)3(H2O)5(PW9O34)](1,2,4-Hbtc)}·H2enMe·5H2O, to create a composite cluster TiO2@Ni6-POMOF. Composites with 1 wt.% Ni6-POMOFs exhibited the best photocatalytic efficiency and displayed high photocatalytic rates in a strongly acidic environment when used to degrade RhB and MB under visible light (450 nm). The successful integration of POMOFs with TiO2 not only offers innovative design concepts for photocatalysts with complex structures but also opens a new approach for the development of POMOF catalysts in the future.

Electronic Supplementary Material

Download File(s)
0089_ESM.pdf (288.6 KB)

References

[1]

Fang, M. J.; Tsao, C. W.; Hsu, Y. J. Semiconductor nanoheterostructures for photoconversion applications. J. Phys. D: Appl. Phys. 2020, 53, 143001.

[2]

Gupta, V. K.; Suhas. Application of low-cost adsorbents for dye removal-a review. J. Environ. Manage. 2009, 90, 2313–2342.

[3]

Saravanan, R.; Gupta, V. K.; Narayanan, V.; Stephen, A. Visible light degradation of textile effluent using novel catalyst ZnO/γ–Mn2O3. J. Taiwan Inst. Chem. Eng. 2014, 45, 1910–1917.

[4]

Xu, J. C.; Xin, P. H.; Gao, Y. Q.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Gong, J.; Ge, H. L. et al. Magnetic properties and methylene blue adsorptive performance of CoFe2O4/activated carbon nanocomposites. Mater. Chem. Phys. 2014, 147, 915–919.

[5]

Ruan, D. L.; Qin, L. M.; Chen, R. X.; Xu, G. J.; Su, Z. B.; Cheng, J. H.; Xie, S. L.; Cheng, F. L.; Ko, F. Transparent PAN: TiO2 and PAN–co–PMA: TiO2 nanofiber composite membranes with high efficiency in particulate matter pollutants filtration. Nanoscale Res. Lett. 2020, 15, 7.

[6]

Picos-Corrales, L. A.; Sarmiento-Sánchez, J. I.; Ruelas-Leyva, J. P.; Crini, G.; Hermosillo-Ochoa, E.; Gutierrez-Montes, J. A. Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega 2020, 5, 3943–3951.

[7]

He, Q.; Liang, J. J.; Chen, L. X.; Chen, S. L.; Zheng, H. L.; Liu, H. X.; Zhang, H. J. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms. Water Res. 2020, 168, 115164.

[8]

Takasuga, T.; Takemori, H.; Yamamoto, T.; Higashino, K.; Sasaki, Y.; Weber, R. Comprehensive monitoring of chlorinated aromatic and heteroaromatic pollutants at sites contaminated by chlorine production processes to inform policy making. Emerg. Contam. 2020, 6, 133–142.

[9]

Zhang, H.; Gong, W. J.; Bai, L. M.; Chen, R.; Zeng, W. C.; Yan, Z. S.; Li, G. B.; Liang, H. Aeration-induced CO2 stripping, instead of high dissolved oxygen, have a negative impact on algae–bacteria symbiosis (ABS) system stability and wastewater treatment efficiency. Chem. Eng. J. 2020, 382, 122957.

[10]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[11]

Xu, S. Y.; Shi, W. X.; Huang, J. R.; Yao, S.; Wang, C.; Lu, T. B.; Zhang, Z. M. Single-cluster functionalized TiO2 nanotube array for boosting water oxidation and CO2 photoreduction to CH3OH. Angew. Chem., Int. Ed. 2024, 63, e202406223.

[12]

Pitre, S. P.; McTiernan, C. D.; Scaiano, J. C. Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free alternatives. Acc. Chem. Res. 2016, 49, 1320–1330.

[13]

Henderson, M. A.; Lyubinetsky, I. Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2 (110). Chem. Rev. 2013, 113, 4428–4455.

[14]

Cao, Y. Q.; Zi, T. Q.; Zhao, X. R.; Liu, C.; Ren, Q.; Fang, J. B.; Li, W. M.; Li, A. D. Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition. Sci. Rep. 2020, 10, 13437.

[15]

Singh, R.; Dutta, S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 2018, 220, 607–620.

[16]

Sun, J. F.; Yang, Z. J.; Li, L. Z.; Zhang, Y.; Zou, G. F. Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution. Environ. Sci. Pollut. Res. 2021, 28, 50813–50824.

[17]

Georgekutty, R.; Seery, M. K.; Pillai, S. C. A highly efficient Ag–ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 2008, 112, 13563–13570.

[18]

Ratanatawanate, C.; Chyao, A.; Balkus, K. J. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J. Am. Chem. Soc. 2011, 133, 3492–3497.

[19]

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

[20]

Zhou, W.; Sun, F. F.; Pan, K.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 2011, 21, 1922–1930.

[21]

Lira, E.; Wendt, S.; Huo, P. P.; Hansen, J. Ø.; Streber, R.; Porsgaard, S.; Wei, Y. Y.; Bechstein, R.; Lægsgaard, E.; Besenbacher, F. The importance of bulk Ti3+ defects in the oxygen chemistry on Titania surfaces. J. Am. Chem. Soc. 2011, 133, 6529–6532.

[22]

Reddy, P. A. K.; Srinivas, B.; Kala, P.; Kumari, V. D.; Subrahmanyam, M. Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater. Res. Bull. 2011, 46, 1766–1771.

[23]

Ratanatawanate, C.; Xiong, C. R.; Balkus, K. J. Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2008, 2, 1682–1688.

[24]

Sato, S.; White, J. M. Reactions of water with carbon and ethylene over illuminated PT/TIO2. Chem. Phys. Lett. 1980, 70, 131–134.

[25]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[26]

Bi, H. X.; Guo, M. S.; Du, J.; Ma, Y. Y.; Han, Z. G. Polyoxometalate chemistry of {M[P4Mo6]2}: From structure assembly to functional application. Coordin. Chem. Rev. 2024, 518, 216092.

[27]

Lian, C.; Zhao, S. H.; Li, H. L.; Cao, X. H. A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chin. Chem. Lett. 2024, 35, 109343.

[28]

Sun, H.; Xu, X. M.; Jing, C. J.; Shang, W. H.; Wang, Y. C.; Zeng, M. L.; Jia, Z. Y. Composite clusters: Co5.7Ni2.3W12O42(OH)4@fluoro-graphdiyne as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Mater. Chem. Front. 2021, 5, 7666–7674.

[29]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Cat. B: Environ. 2021, 281, 119426.

[30]

Han, X. B.; Li, Y. G.; Zhang, Z. M.; Tan, H. Q.; Lu, Y.; Wang, E. B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.

[31]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[32]

Gu, X. Y.; Lin, J.; Zhao, W. L.; Xue, Z. C.; Cui, C. S.; Huang, X. Q. Dipyridine amine octamolybdates hybrid material effectively catalyzed oxidation of sulfide derivatives with hydrogen peroxide. J. Nanoelectron. Optoe. 2021, 16, 17–22.

[33]

Liu, G.; Chen, Y. F.; Chen, Y. L.; Shi, Y. Q.; Zhang, M. Y.; Shen, G. D.; Qi, P. F.; Li, J. K.; Ma, D. L.; Yu, F. et al. Indirect electrocatalysis S–N/S–S bond construction by robust polyoxometalate based foams. Adv. Mater. 2023, 35, 2304716.

[34]

Qin, K. J.; Zang, D. J.; Wei, Y. G. Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chin. Chem. Lett. 2023, 34, 107999.

[35]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[36]

Zeng, Y.; Zhao, M. T.; Zeng, H. L.; Jiang, Q.; Ming, F. W.; Xi, K.; Wang, Z. C.; Liang, H. F. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 2023, 3, 100156.

[37]

Wang, Y.; Liu, Q.; Ma, Y. Y.; Liu, Z. X.; Zhang, Y. N.; Wang, Y. S.; Du, J.; Han, Z. G. Polyoxometalate-embedded copper-organic network as dual-site synergetic catalyst for the selective oxidation of benzylic C–H bond. Mol. Catal. 2024, 569, 114579.

[38]

Huang, X. Q.; Liu, S.; Liu, G.; Tao, Y. W.; Wang, C. R.; Zhang, Y. L.; Li, Z.; Wang, H. W.; Zhou, Z.; Shen, G. D. et al. An unprecedented 2-fold interpenetrated lvt open framework built from Zn6 ring seamed trivacant polyoxotungstates used for photocatalytic synthesis of pyridine derivatives. Appl. Cat. B: Environ. 2023, 323, 122134

[39]

Wang, Q. W.; Wang, J. X.; Zhang, D.; Chen, Y. N.; Wang, J.; Wang, X. H. Fabrication of macroporous POMs/biochar materials for fast degradation of phthalic acid esters through adsorption coupled with aerobic oxidation. Polyoxometalates 2024, 3, 9140064.

[40]

Li, S.; Zheng, Y.; Liu, G. C.; Li, X. H.; Zhang, Z.; Wang, X. L. New two fold interpenetrating 3D polyoxovanadate-based metal-organic framework as bifunctional catalyst for the removal of 2-chloroethyl ethyl sulfide and phenolic compounds. Polyoxometalates 2024, 3, 9140061.

[41]

Song, H.; Guo, M. S.; Wang, J. F.; Liu, Y. Q.; Bi, H. X.; Du, J.; An, W. T.; Ma, Y. Y.; Han, Z. G. Reduced phosphomolybdate as photoassisted electrochemical crystalline sensor for trace Cr(VI) detection. Polyoxometalates 2024, 3, 9140065.

[42]

Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358.

[43]

Cheng, Y.; Qin, K. J.; Zang, D. J. Polyoxometalates based nanocomposites for bioapplications. Rare Met. 2023, 42, 3570–3600.

[44]

Sun, Z. X.; Zhao, M. L.; Li, F. Y.; Wang, T. Q.; Xu, L. Nanocomposite film of TiO2 nanotube and polyoxometalate towards photocatalytic degradation of nitrobenzene. Mater. Res. Bull. 2014, 60, 524–529.

[45]

Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus Jr, K. J. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956.

[46]

Wu, Y.; Bi, L. H. Research progress on catalytic water splitting based on polyoxometalate/semiconductor composites. Catalysts 2021, 11, 524.

[47]

Zhang, Z. R.; Sui, H. Y.; Shi, W. X.; Ren, J.; Yao, S.; Lu, T. B.; Zhang, Z. M. Polyoxometalate-based single-atom catalyst with precise structure and extremely exposed active site for efficient H2 evolution. Angew. Chem., Int. Ed. 2025, 64, e202416711.

[48]

Yoon, M.; Chang, J. A.; Kim, Y.; Choi, J. R.; Kim, K.; Lee, S. J. Heteropoly acid-incorporated TiO2 Colloids as novel photocatalytic systems resembling the photosynthetic reaction center. J. Phys. Chem. B 2001, 105, 2539–2545.

[49]

Xie, Y. B. Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes. Adv. Funct. Mater. 2006, 16, 1823–1831.

[50]

Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.

[51]

Wang, Y. J.; Cheng, X.; Ma, N. N.; Cheng, W. Y.; Zhang, P.; Luo, F.; Shi, W. X.; Yao, S.; Lu, T. B.; Zhang, Z. M. In situ growth of metal-organic layer on polyoxometalate-etching Cu2O to boost CO2 reduction with high stability. Angew. Chem., Int. Ed. 2025, 64, e202423204.

[52]

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

[53]

Han, J. W.; Hill, C. L. A coordination network that catalyzes O2-based oxidations. J. Am. Chem. Soc. 2007, 129, 15094–15095.

[54]

Zhang, L.; Fan, X.; Yi, X. F.; Lin, X.; Zhang, J. Coordination-delayed-hydrolysis method for the synthesis and structural modulation of titanium-oxo clusters. Acc. Chem. Res. 2022, 55, 3150–3161.

[55]

Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.

[56]

Jiang, Z. Q.; Liu, J. X.; Gao, M. Y.; Fan, X.; Zhang, L.; Zhang, J. Assembling polyoxo-titanium clusters and CdS nanoparticles to a porous matrix for efficient and tunable H2-evolution activities with visible light. Adv. Mater. 2017, 29, 1603369.

[57]

Chen, W. Z.; Yi, X. F.; Zhang, J.; Zhang, L. Heterometallic Mo–Ti oxo clusters with metal–metal bonds: Preparation and visible-light absorption behaviors. Polyoxometalates 2023, 2, 9140013.

[58]

Cong, B. W.; Su, Z. H.; Zhao, Z. F.; Zhao, W. Q.; Ma, X. J.; Xu, Q.; Du, L. J. A new 3D POMOF with two channels consisting of Wells-Dawson arsenotungstate and {Cl4Cu10(pz)11} complexes: Synthesis, crystal structure, and properties. New J. Chem. 2018, 42, 4596–4602.

[59]

Zheng, S. T.; Zhang, J.; Yang, G. Y. Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions. Angew. Chem., Int. Ed. 2008, 47, 3909–3913.

Polyoxometalates
Article number: 9140089
Cite this article:
Sun H, Wu M, He D, et al. Titanium dioxide@polyoxometalate-organic framework as an efficient photocatalyst for dye degradation under visible light conditions. Polyoxometalates, 2025, 4(2): 9140089. https://doi.org/10.26599/POM.2025.9140089
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return