AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of chronic stress on nectin1 levels in the mouse primary somatosensory cortex

Department of Neurobiology and Department of Psychiatryof Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
Show Author Information

Abstract

Chronic exposure to stressful experiences impairs synaptic plasticity. Previous studies have shown that the spine densities of pyramidal neurons, the turnover of mushroom-type spines, and the excitatory–inhibitory balance in the primary somatosensory cortex (S1) are modulated by stress. Trans-synaptic cell adhesion molecules (CAMs) are implicated in stress-induced synaptic deficits. However, it remains unknown whether stress dysregulates CAMs in S1 and thereby impairs synaptic plasticity. In this study, we applied the early-life stress (ELS), chronic social defeat stress (CSDS), and chronic restraint stress paradigms and measured the mRNA levels of nectin1 in S1 of wild-type and conditional forebrain corticotropin-releasing hormone receptor 1 type (CRHR1) conditional knockout mice. We found that ELS increased nectin1 mRNA levels in S1 in adult but not adolescent mice. Moreover, CSDS increased the nectin1 mRNA levels in S1 in adult mice via the CRH-CRHR1 system. Our findings suggest that S1 is vulnerable to repeated stress exposures at some life stages, and dysregulated nectin1 expression may underlie stress-induced structural and functional abnormalities in S1.

References

[1]

Krishnan, V., Han, M. H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., Laplant, Q., Graham, A., Lutter, M., Lagace, D. C. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 2007, 131(2): 391–404.

[2]

Chen, Y., Rex, C. S., Rice, C. J., Dubé, C. M., Gall, C. M., Lynch, G., Baram, T. Z. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proceedings of the National Academy of Sciences USA, 2010, 107(29): 13123–13128.

[3]

Ma, M., Chang, X., Wu, H. Animal models of stress and stress-related neurocircuits: A comprehensive review. Stress and Brain, 2021, 1(2): 108–127.

[4]

Christoffel, D. J., Golden, S. A., Russo, S. J. Structural and synaptic plasticity in stress-related disorders. Reviews in the Neurosciences, 2011, 22(5): 535–549.

[5]

Cruz-Martín, A., Crespo, M., Portera-Cailliau, C. Delayed stabilization of dendritic spines in fragile X mice. The Journal of Neuroscience, 2010, 30(23): 7793–7803.

[6]

Hayashi-Takagi, A., Tataki, M., Graziane, N., Seshadri, S., Murdoch, H., Dunlop, A. J., Makino, Y., Seshadri, A. J., Ishizuka, K., Srivastava, D. P. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nature Neuroscience, 2010, 13(3): 327–323.

[7]

Penzes, P., Woolfrey, K. M., Srivastava, D. P. Epac2-mediated dendritic spine remodeling: Implications for disease. Molecular and Cellular Neurosciences, 2011, 46(2): 368–380.

[8]

Akram, A., Christoffel, D., Rocher, A. B., Bouras, C., Kövari, E., Perl, D. P., Morrison, J. H., Herrmann, F. R., Haroutunian, V., Giannakopoulos, P. et al. Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: Relationship with the progression of Alzheimer's disease. Neurobiology of Aging, 2008, 29(9): 1296–1307.

[9]

Dumitriu, D., Hao, J., Hara, Y., Kaufmann, J., Janssen, W. G., Lou, W., Rapp, P. R., Morrison, J. H. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. The Journal of Neuroscience, 2010, 30(22): 7507–7515.

[10]

McEwen, B. S. Stress and hippocampal plasticity. Annual Review of Neuroscience, 1999, 22: 105–122.

[11]

McEwen, B. S., Morrison, J. H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 2013, 79(1): 16–29.

[12]

Radley, J. J., Sisti, H. M., Hao, J., Rocher, A. B., McCall, T., McEwen B. S., Morrison, J. H. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience, 2004, 125(1): 1–6.

[13]

Akirav, I., Maroun, M. The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plasticity, 2007, 2007: 30873.

[14]

Tottenham, N., Galván, A. Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience and Biobehavioral Reviews, 2016, 70: 217–227.

[15]

López, J. F., Akil, H., Watson, S. J. Neural circuits mediating stress. Biological Psychiatry, 1999, 46(11): 1461–1471.

[16]

Chen, C. C., Lu, J., Yang, R., Ding, J. B., Zuo, Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Molecular Psychiatry, 2018, 23(7): 1614–1625.

[17]

Chen, K., Zhang, L., Tan, M., Lai, C. S., Li, A., Ren, C., So, K. F. Treadmill exercise suppressed stress-induced dendritic spine elimination in mouse barrel cortex and improved working memory via BDNF/TrkB pathway. Translational Psychiatry, 2017, 7(3): e1069.

[18]

Wang, C., Liu, H., Li, K., Wu, Z. Z., Wu, C., Yu, J. Y., Gong, Q., Fang, P., Wang, X. X., Duan, S. M. et al. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nature Communications, 2020, 11(1): 6045.

[19]

Dalva, M. B., McClelland, A. C., Kayser, M. S. Cell adhesion molecules: signalling functions at the synapse. Nature Review Neuroscience, 2007, 8(3): 206–220.

[20]

Gong, Q., Su, Y. A., Wu, C., Si, T. M., Deussing, J. M., Schmidt, M. V., Wang, X. D. Chronic stress reduces nectin-1 mRNA levels and disrupts dendritic spine plasticity in the adult mouse perirhinal cortex. Frontiers in Cellular Neuroscience, 2018, 12: 67.

[21]

Takai, Y., Ikeda, W., Ogita, H., Rikitake, Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annual Review of Cell and Developmental Biology, 2008, 24: 309–342.

[22]

van der Kooij, M. A., Fantin, M., Rejmak, E., Grosse, J., Zanoletti, O., Fournier, C., Ganguly, K., Kalita, K., Kaczmarek, L., Sandi, C. Role for MMP-9 in stress-induced downregulation of nectin-3 in hippocampal CA1 and associated behavioural alterations. Nature Communications, 2014, 5: 4995.

[23]

Wang, X. D., Chen, Y., Wolf, M., Wagner, K. V., Liebl, C., Scharf, S. H., Harbich, D., Mayer, B., Wurst, W., Holsboer, F. et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiology of Disease, 2011, 42(3): 300–310.

[24]

Liao, X. M., Yang, X. D., Jia, J., Li, J. T., Xie, X. M., Su, Y. A., Schmidt, M. V., Si, T. M., Wang, X. D. Blockade of corticotropin-releasing hormone receptor 1 attenuates early-life stress-induced synaptic abnormalities in the neonatal hippocampus. Hippocampus, 2014, 24(5): 528–540.

[25]

Müller, M. B., Zimmermann, S., Sillaber, I., Hagemeyer, T. P., Deussing, J. M., Timpl, P., Kormann, M. S., Droste, S. K., Kühn, R., Reul, J. M. et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience, 2003, 6(10): 1100–1107.

[26]

Lu, A., Steiner, M. A., Whittle, N., Vogl, A. M., Walser, S. M., Ableitner, M., Refojo, D., Ekker, M., Rubenstein, J. L., Stalla, G. K. et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Molecular Psychiatry, 2008, 13(11): 1028–1042.

[27]

Wang, X. D., Su, Y. A., Avrabos, C., Wagner, K. V., Liebl, C., Wolf, M., Scharf, S. H., Hartmann, J., Wurst, W., Holsboer, F. et al. Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nature Neuroscience, 2013, 16: 706–713.

[28]

Rice, C. J., Sandman, C. A., Lenjavi, M. R., Baram, T. Z. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 2008, 149(10): 4892–4900.

[29]

Wang, X. D., Rammes, G., Igor, K., Wolf, M., Liebl, C., Scharf, S. H., Rice, C. J., Wurst, W., Holsboer, F., Deussing, J. M. et al. Forebrain CRF1 modulates early-life stress-programmed cognitive deficits. The Journal of Neuroscience, 2011, 31(38): 13625–13634.

[30]

Wagner, K. V., Hartmann, J., Labermaier, C., Häusl, A. S., Zhao, G., Harbich, D., Schmid, B., Wang, X. D., Santarelli, S., Kohl, C. et al. Homer1/mGluR5 activity moderates vulnerability to chronic social stress. Neuropsychopharmacology, 2015, 40(5): 1222–1233.

[31]

Schmidt, M. V., Sterlemann, V., Ganea, K., Liebl, C., Alam, S., Harbich, D., Greetfeld, M., Uhr, M., Holsboer, F., Müller, M. B. Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence. Psychoneuroendocrinology, 2007, 32(5): 417–429.

[32]

Maurin, H., Seymour, C. M., Lechat, B., Borghgraef, P., Devijver, H., Jaworski, T., Schmidt, M. V., Kuegler, S., Van Leuven, F. Tauopathy differentially affects cell adhesion molecules in mouse brain: Early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS One, 2013, 8(5): e63589.

[33]

Schmidt, M. V., Oitzl, M. S., Levine, S., de Kloet, E. R. The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Developmental Brain Research, 2002, 139(1): 39–49.

[34]

Lupien, S. J., McEwen, B. S., Gunnar, M. R., Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 2009, 10(6): 434–445.

[35]

McEwen, B. S. Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 2006, 8(4): 367–381.

[36]

Wang, C., Liu, H., Li, K., Wu, Z. Z., Wu, C., Yu, J. Y., Gong, Q., Fang, P., Wang, X. X., Duan, S. M. et al. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nature Communications, 2020, 11(1): 6045.

[37]

Bock, J., Gruss, M., Becker, S., Braun, K. Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: Correlation with developmental time windows. Cerebral Cortex, 2004, 15(6): 802–808.

[38]

Takatsuru, Y., Yoshitomo, M., Nemoto, T., Eto, K., Nabekura, J. Maternal separation decreases the stability of mushroom spines in adult mice somatosensory cortex. Brain Research, 2009, 1294: 45–51.

[39]

Chen, C. C., Lu, J., Yang, R., Ding, J. B., Zuo, Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Molecular Psychiatry, 2018, 23(7): 1614–1625.

[40]

Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nature Reviews Neuroscience, 2004, 5(12): 917–930.

[41]

Chen, Y., Andres, A. L., Frotscher, M., Baram, T. Z. Tuning synaptic transmission in the hippocampus by stress: The CRH system. Frontiers in Cellular Neuroscience, 2012, 6: 13.

[42]

Maras, P. M., Baram, T. Z. Sculpting the hippocampus from within: Stress, spines, and CRH. Trends in Neurosciences, 2012, 35(5): 315–324.

[43]

de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., Joëls, M. Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 1998, 19(3): 269–301.

[44]

Meijer, O. C., Koorneef, L. L., Kroon, J. Glucocorticoid receptor modulators. Annales d'Endocrinologie, 2018, 79(3): 107–111.

[45]

Van Looveren, K., Van Boxelaere, M., Callaerts-Vegh, Z., Libert, C. Cognitive dysfunction in mice lacking proper glucocorticoid receptor dimerization. PLoS One, 2019, 14(12): e0226753.

[46]

Bale, T. L., Picetti, R., Contarino, A., Koob, G. F., Vale, W. W., Lee, K. F. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. The Journal of Neuroscience, 2002, 22(1): 193–199.

Stress and Brain
Pages 100-110
Cite this article:
Xu X, Wang X-D. Effects of chronic stress on nectin1 levels in the mouse primary somatosensory cortex. Stress and Brain, 2022, 2(3): 100-110. https://doi.org/10.26599/SAB.2022.9060013

1714

Views

213

Downloads

0

Crossref

Altmetrics

Received: 30 March 2022
Revised: 30 July 2022
Accepted: 02 September 2022
Published: 22 September 2022
© The Author(s) 2022

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return