AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Behavior-inhibition effects of hippocampal dentate gyrus overactivation after single ethanol vapor

Xin-Yue Wang1,2,§Jie Li1,2,§Wan-Kun Gong1,2( )Wei-Jie Xie1,2( )
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China

§ Xin-Yue Wang and Jie Li contributed equally to this work.

Show Author Information

Abstract

Alcohol use disorder (AUD) is a common mental disorder that may cause dementia and mood disorders such as anxiety. The dentate gyrus (DG) is a key brain region for dementia as well as anxiety, while the underlying mechanisms of DG-based behavioral impairments induced by ethanol are not fully understood. Here we report the DG-based behavior inhibition using the ethanol vapor exposure procedure combined with behavioral tasks. The results indicate that single ethanol vapor exposure leads to working memory impairments and decreased anxiety-like behaviors 24 h after single ethanol vapor exposure. Notably, the c-Fos staining shows that the hippocampal DG is overactivated by ethanol administration, which implies DG plays a pivotal role in mediating the working memory and anxiety-like behaviors induced by ethanol vapor exposure. This links overactivation effects of ethanol vapor on hippocampal DG functions to ethanol-induced behavior inhibition, suggesting that future studies concerning ethanol-induced cognitive and mood disorders may focus more on the abnormal activity of this brain region.

References

[1]

Sacks, J. J., Gonzales, K. R., Bouchery, E. E., Tomedi, L. E., Brewer, R. D. 2010 national and state costs of excessive alcohol consumption. American Journal of Preventive Medicine, 2015, 49(5): e73–e79.

[2]

Palmer, B. F., Clegg, D. J. Electrolyte disturbances in patients with chronic alcohol-use disorder. The New England Journal of Medicine, 2017, 377(14): 1368–1377.

[3]

Grant, B. F., Saha, T. D., Ruan, W. J., Goldstein, R. B., Chou, S. P., Jung, J., Zhang, H., Smith, S. M., Pickering, R. P., Huang, B. et al. Epidemiology of DSM-5 drug use disorder: Results from the national epidemiologic survey on alcohol and related conditions-Ⅲ. JAMA Psychiatry, 2016, 73(1): 39–47.

[4]

Serrano, A., Pavon, F. J., Buczynski, M. W., Schlosburg, J., Natividad, L. A., Polis, I. Y., Stouffer, D. G., Zorrilla, E. P., Roberto, M., Cravatt, B. F. et al. Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake. Neuropsychopharmacology, 2018, 43(9): 1840–1850.

[5]

Schwarzinger, M., Pollock, B. G., Hasan, O. S. M., Dufouil, C., Rehm, J., QalyDays Study Group. Contribution of alcohol use disorders to the burden of dementia in France 2008-13: A nationwide retrospective cohort study. The Lancet Public Health, 2018, 3(3): e124–e132.

[6]

Kivimäki, M., Singh-Manoux, A., Batty, G. D., Sabia, S., Sommerlad, A., Floud, S., Jokela, M., Vahtera, J., Beydoun, M. A., Suominen, S. B. et al. Association of alcohol-induced loss of consciousness and overall alcohol consumption with risk for dementia. JAMA Network Open, 2020, 3(9): e2016084.

[7]

Roy, D. S., Arons, A., Mitchell, T. I., Pignatelli, M., Ryan, T. J., Tonegawa, S. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature, 2016, 531(7595): 508–512.

[8]

Richetin, K., Steullet, P., Pachoud, M., Perbet, R., Parietti, E., Maheswaran, M., Eddarkaoui, S., Bégard, S., Pythoud, C., Rey, M. et al. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nature Neuroscience, 2020, 23(12): 1567–1579.

[9]

Meng, F. T., Liu, J., Dai, J. J., Lian, H. F., Jiang, S. J., Li, Q. Y., Wu, M., Wang, W. T., Wang, D., Zhao, D. et al. PPM1F in dentate gyrus modulates anxiety-related behaviors by regulating BDNF expression via AKT/JNK/p-H3S10 pathway. Molecular Neurobiology, 2021, 58(7): 3529–3544.

[10]

Söderpalm, B., Lidö, H. H., Ericson, M. The glycine receptor-A functionally important primary brain target of ethanol. Alcoholism, Clinical and Experimental Research, 2017, 41(11): 1816–1830.

[11]

Badanich, K. A., Mulholland, P. J., Beckley, J. T., Trantham-Davidson, H., Woodward, J. J. Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology, 2013, 38(7): 1176–1188.

[12]

Abrahao, K. P., Salinas, A. G., Lovinger, D. M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits. Neuron, 2017, 96(6): 1223–1238.

[13]

Abrahao, K. P., Ariwodola, O. J., Butler, T. R., Rau, A. R., Skelly, M. J., Carter, E., Alexander, N. P., McCool, B. A., Souza-Formigoni, M. L., Weiner, J. L. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. The Journal of Neuroscience, 2013, 33(11): 4834–4842.

[14]

Santos-Bezerra, D. P., Cavaleiro, A. M., Santos, A. S., Suemoto, C. K., Suemoto, C. K., Pasqualucci, C. A., Jacob-Filho, W., Leite, R. E. P., Passarelli, M., Marie, S. K. N. et al. Alcohol use disorder is associated with upregulation of microRNA-34a and microRNA-34c in hippocampal postmortem tissue. Alcoholism, Clinical and Experimental Research, 2021, 45(1): 64–68.

[15]

Mira, R. G., Tapia-Rojas, C., Pérez, M. J., Jara, C., Vergara, E. H., Quintanilla, R. A., Cerpa, W. Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence, 2019, 205: 107628.

[16]

Socodato, R., Henriques, J. F., Portugal, C. C., Almeida, T. O., Tedim-Moreira, J., Alves, R. L., Canedo, T., Silva, C., Magalhães, A., Summavielle, T. et al. Daily alcohol intake triggers aberrant synaptic pruning leading to synapse loss and anxiety-like behavior. Science Signaling, 2020, 13(650): eaba5754.

[17]

Childs, E., O'Connor, S., de Wit, H. Bidirectional interactions between acute psychosocial stress and acute intravenous alcohol in healthy men. Alcoholism, Clinical and Experimental Research, 2011, 35(10): 1794–1803.

[18]
Koob, G. F., Britton, K. T. Neurobiological substrates for the anti-anxiety effects of ethanol. In: The Pharmacology of Alcohol and Alcohol dependence, 1st edn. Oxford University Press, 1996: 477–506.
[19]

Kushner, M. G., Abrams, K., Borchardt, C. The relationship between anxiety disorders and alcohol use disorders: A review of major perspectives and findings. Clinical Psychology Review, 2000, 20(2): 149–171.

[20]

Cofresí, R. U., Watts, A. L., Martins, J. S., Wood, P. K., Sher, K. J., Cowan, N., Miyake, A., Bartholow, B. D. Acute effect of alcohol on working memory updating. Addiction (Abingdon, England), 2021, 116(11): 3029–3043.

[21]

Spinola, S., de Vita, M. J., Gilmour, C. E., Maisto, S. A. Effects of acute alcohol administration on working memory: A systematic review and meta-analysis. Psychopharmacology, 2022, 239(3): 695–708.

[22]

Lechner, W. V., Day, A. M., Metrik, J., Leventhal, A. M., Kahler, C. W. Effects of alcohol-induced working memory decline on alcohol consumption and adverse consequences of use. Psychopharmacology, 2016, 233(1): 83–88.

[23]

Santos-Bezerra, D. P., Cavaleiro, A. M., Santos, A. S., Suemoto, C. K., Suemoto, C. K., Pasqualucci, C. A., Jacob-Filho, W., Leite, R. E. P., Passarelli, M., Marie, S. K. N. et al. Alcohol use disorder is associated with upregulation of microRNA-34a and microRNA-34c in hippocampal postmortem tissue. Alcoholism, Clinical and Experimental Research, 2021, 45(1): 64–68.

[24]

Taffe, M. A., Kotzebue, R. W., Crean, R. D., Crawford, E. F., Edwards, S., Mandyam, C. D. Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman Primates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24): 11104–11109.

[25]

Bach, E. C., Morgan, J. W., Ewin, S. E., Barth, S. H., Raab-Graham, K. F., Weiner, J. L. Chronic ethanol exposures leads to a negative affective state in female rats that is accompanied by a paradoxical decrease in ventral hippocampus excitability. Frontiers in Neuroscience, 2021, 15: 669075.

[26]

Lam, V. Y. Y., Raineki, C., Ellis, L., Yu, W., Weinberg, J. Interactive effects of prenatal alcohol exposure and chronic stress in adulthood on anxiety-like behavior and central stress-related receptor mRNA expression: Sex- and time-dependent effects. Psychoneuroendocrinology, 2018, 97: 8–19.

[27]

Dang, R., Wang, M., Li, X., Wang, H., Liu, L., Wu, Q., Zhao, J., Ji, P., Zhong, L., Licinio, J. et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. Journal of Neuroinflammation, 2022, 19(1): 41.

[28]

Yue, N., Huang, H., Zhu, X., Han, Q., Wang, Y., Li, B., Liu, Q., Wu, G., Zhang, Y., Yu, J. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. Journal of Neuroinflammation, 2017, 14(1): 102.

[29]

Ewin, S. E., Morgan, J. W., Niere, F., McMullen, N. P., Barth, S. H., Almonte, A. G., Raab-Graham, K. F., Weiner, J. L. Chronic intermittent ethanol exposure selectively increases synaptic excitability in the ventral domain of the rat hippocampus. Neuroscience, 2019, 398: 144–157.

[30]

Wang, D., Zhai, X., Chen, P., Yang, M., Zhao, J., Dong, J., Liu, H. Hippocampal UCP2 is essential for cognition and resistance to anxiety but not required for the benefits of exercise. Neuroscience, 2014, 277: 36–44.

[31]

Tunc-Ozcan, E., Peng, C. Y., Zhu, Y., Dunlop, S. R., Contractor, A., Kessler, J. A. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nature Communications, 2019, 10(1): 3768.

Stress and Brain
Pages 111-119
Cite this article:
Wang X-Y, Li J, Gong W-K, et al. Behavior-inhibition effects of hippocampal dentate gyrus overactivation after single ethanol vapor. Stress and Brain, 2022, 2(3): 111-119. https://doi.org/10.26599/SAB.2022.9060018

1338

Views

139

Downloads

0

Crossref

Altmetrics

Received: 02 May 2022
Accepted: 17 October 2022
Published: 26 October 2022
© The Author(s) 2022

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return