AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (845.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Progress of neural circuits mechanism underlying metabolic and hedonic feeding

Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou 310058, China
NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
NorthStar Academy, Southaven, MS 38672, USA
Show Author Information

Abstract

Feeding behavior is imperative for the survival and reproduction of animals. Depending on the motivation, feeding is induced by metabolic need or hedonic reason, which is associated with energy demand or pleasurable food intake respectively. Although substantial differences exist, neural circuits for metabolic and hedonic feeding are largely intertwined. Here, we review the distinctions and overlaps between metabolic and hedonic feeding to provide insights into the central regulation of feeding.

References

[1]

Cox, P. G., Rayfield, E. J., Fagan, M. J., Herrel, A., Pataky, T. C., Jeffery, N. Functional evolution of the feeding system in rodents. PLoS One, 2012, 7: e36299.

[2]

Berthoud, H. R., Morrison, C. The brain, appetite, and obesity. Annual Review of Psychology, 2008, 59: 55–92.

[3]

Nogueiras, R., Romero-Picó, A., Vazquez, M. J., Novelle, M. G., López, M., Diéguez, C. The opioid system and food intake: Homeostatic and hedonic mechanisms. Obesity Facts, 2012, 5(2): 196–207.

[4]

Berthoud, H. R. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity (Silver Spring, Md), 2006, 14(Suppl 5): 197S–200S.

[5]

Berthoud, H. R., Lenard, N. R., and Shin, A. C. Food reward, hyperphagia, and obesity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2011, 300(6): R1266–R1277.

[6]

Betley, J. N., Cao, Z. F., Ritola, K. D., Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 2013, 155(6): 1337–1350.

[7]

Chen, Y., Lin, Y. C., Kuo, T. W., Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell, 2015, 160(5): 829–841.

[8]

Denis, R. G., Joly-Amado, A., Webber, E., Langlet, F., Schaeffer, M., Padilla, S. L., Cansell, C., Dehouck, B., Castel, J., Delbès, A. S. et al. Palatability can drive feeding independent of AgRP neurons. Cell Metab, 2015, 22(4): 646–657.

[9]

Diano, S., Naftolin, F., Goglia, F., Csernus, V., Horvath, T. L. Monosynaptic pathway between the arcuate nucleus expressing glial type Ⅱ iodothyronine 5'-deiodinase mRNA and the Median eminence-projective TRH cells of the rat paraventricular nucleus. Journal of Neuroendocrinology, 1998, 10(10): 731–742.

[10]

Dickson, S. L., Shirazi, R. H., Hansson, C., Bergquist, F., Nissbrandt, H., Skibicka, K. P. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic GLP-1 receptors. The Journal of Neuroscience, 2012, 32(14): 4812–4820.

[11]

Hsu, J. Y., Crawley, S., Chen, M., Ayupova, D. A., Lindhout, D. A., Higbee, J., Kutach, A., Joo, W., Gao, Z., Fu, D. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature, 2017, 550(7675): 255–259.

[12]

Petrovich, G. D. The function of paraventricular thalamic circuitry in adaptive control of feeding behavior. Frontiers in Behavioral Neuroscience, 2021, 15: 671096.

[13]

Elmquist, J. K., Elias, C. F., Saper, C. B. From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 1999, 22(2): 221–232.

[14]

Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., Schwartz, M. W. Central nervous system control of food intake and body weight. Nature, 2006, 443(7109): 289–295.

[15]

Berland, C., Castel, J., Terrasi, R., Montalban, E., Foppen, E., Martin, C., Muccioli, G. G., Luquet, S., Gangarossa, G. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Molecular Psychiatry, 2022, 27(4): 2340–2354.

[16]

Choi, D. L., Davis, J. F., Magrisso, I. J., Fitzgerald, M. E., Lipton, J. W., Benoit, S. C. Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience, 2012, 210: 243–248.

[17]

Christoffel, D. J., Walsh, J. J., Heifets, B. D., Hoerbelt, P., Neuner, S., Sun, G., Ravikumar, V. K., Wu, H., Halpern, C. H., Malenka, R. C. Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nature Communications, 2021, 12(1): 2135.

[18]

Grippo, R. M., Tang, Q., Zhang, Q., Chadwick, S. R., Gao, Y., Altherr, E. B., Sipe, L., Purohit, A. M., Purohit, N. M., Sunkara, M. D. et al. Dopamine signaling in the suprachiasmatic nucleus enables weight gain associated with hedonic feeding. Current Biology, 2020, 30(2): 196–208.e8.

[19]

Berthoud, H. R., Münzberg, H., Morrison, C. D. Blaming the brain for obesity: Integration of hedonic and homeostatic mechanisms. Gastroenterology, 2017, 152(7): 1728–1738.

[20]

Hsu, T. M., McCutcheon, J. E., Roitman, M. F. Parallels and overlap: The integration of homeostatic signals by mesolimbic dopamine neurons. Frontiers in Psychiatry, 2018, 9: 410.

[21]

Rossi, M. A., Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metabolism, 2018, 27(1): 42–56.

[22]

Williams, D. L. Neural integration of satiation and food reward: Role of GLP-1 and orexin pathways. Physiology & Behavior, 2014, 136: 194–199.

[23]

Smith, A. E., Hommel, J. D. Neuroanatomical integration of homeostatic and hedonic brain regions to regulate consummatory behavior. Neuropsychopharmacology, 2022, 47(1): 417.

[24]

Hao, S., Yang, Y., Helmy, M., Wang, H. Neural regulation of feeding behavior. Advances in Experimental Medicine and Biology, 2020, 1284: 23–33.

[25]

Yulyaningsih, E., Rudenko, I. A., Valdearcos, M., Dahlén, E., Vagena, E., Chan, A., Alvarez-Buylla, A., Vaisse, C., Koliwad, S. K., Xu, A. W. Acute lesioning and rapid repair of hypothalamic neurons outside the blood-brain barrier. Cell Reports, 2017, 19(11): 2257–2271.

[26]

Aponte, Y., Atasoy, D., Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neuroscience, 2011, 14(3): 351–355.

[27]

Gropp, E., Shanabrough, M., Borok, E., Xu, A. W., Janoschek, R., Buch, T., Plum, L., Balthasar, N., Hampel, B., Waisman, A. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neuroscience, 2005, 8(10): 1289–1291.

[28]

Zhan, C., Zhou, J., Feng, Q., Zhang, J. E., Lin, S., Bao, J., Wu, P., Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. The Journal of Neuroscience, 2013, 33(8): 3624–3632.

[29]

Farooqi, I. S., O'Rahilly, S. Genetics of obesity in humans. Endocrine Reviews, 2006, 27: 710–718.

[30]

Andermann, M. L., Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron, 2017, 95(4): 757–778.

[31]

Zhang, X., van den Pol, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nature Neuroscience, 2016, 19(10): 1341–1347.

[32]

Fenselau, H., Campbell, J. N., Verstegen, A. M., Madara, J. C., Xu, J., Shah, B. P., Resch, J. M., Yang, Z., Mandelblat-Cerf, Y., Livneh, Y. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nature Neuroscience, 2017, 20(1): 42–51.

[33]

Wang, D., He, X., Zhao, Z., Feng, Q., Lin, R., Sun, Y., Ding, T., Xu, F., Luo, M., Zhan, C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. ACS Macro Letters, 2015, 9: 40.

[34]

Atasoy, D., Betley, J. N., Su, H. H., Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature, 2012, 488(7410): 172–177.

[35]

Son, J. E., Dou, Z., Wanggou, S., Chan, J., Mo, R., Li, X., Huang, X., Kim, K. H., Michaud, J. L., Hui, C. C. Ectopic expression of Irx3 and Irx5 in the paraventricular nucleus of the hypothalamus contributes to defects in Sim1 haploinsufficiency. Sci Adv, 2021, 7(44): eabh4503.

[36]

Garfield, A. S., Li, C., Madara, J. C., Shah, B. P., Webber, E., Steger, J. S., Campbell, J. N., Gavrilova, O., Lee, C. E., Olson, D. P. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nature Neuroscience, 2015, 18(6): 863–871.

[37]

Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbaek, C., Flier, J. S., Saper, C. B., Elmquist, J. K. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron, 1999, 23(4): 775–786.

[38]

Qu, D., Ludwig, D. S., Gammeltoft, S., Piper, M., Pelleymounter, M. A., Cullen, M. J., Mathes, W. F., Przypek, R., Kanarek, R., Maratos-Flier, E. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Molecular Oncology, 1996, 380(6571): 243–247.

[39]

Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S. et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4): 573–585.

[40]

Sakurai, T. Orexins and orexin receptors: Implication in feeding behavior. Regulatory Peptides, 1999, 85(1): 25–30.

[41]

Parise, E. M., Lilly, N., Kay, K., Dossat, A. M., Seth, R., Overton, J. M., Williams, D. L. Evidence for the role of hindbrain orexin-1 receptors in the control of meal size. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2011, 301(6): R1692–R1699.

[42]

Luo, S. X., Huang, J., Li, Q., Mohammad, H., Lee, C. Y., Krishna, K., Kok, A. M., Tan, Y. L., Lim, J. Y., Li, H. et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, 2018, 361(6397): 76–81.

[43]

Zhang, X., van den Pol, A. N. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science, 2017, 356(6340): 853–859.

[44]

Nectow, A. R., Schneeberger, M., Zhang, H., Field, B. C., Renier, N., Azevedo, E., Patel, B., Liang, Y., Mitra, S., Tessier-Lavigne, M. et al. Identification of a brainstem circuit controlling feeding. Cell, 2017, 170(3): 429–442.e11.

[45]

Hao, S., Yang, H., Wang, X., He, Y., Xu, H., Wu, X., Pan, L., Liu, Y., Lou, H., Xu, H. et al. The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Reports, 2019, 28(3): 616–624.e5.

[46]

Woodward, O. R. M., Gribble, F. M., Reimann, F., Lewis, J. E. Gut peptide regulation of food intake—evidence for the modulation of hedonic feeding. The Journal of Physiology, 2022, 600(5): 1053–1078.

[47]

Kelley, A. E., Baldo, B. A., Pratt, W. E., Will, M. J. Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiology & Behavior, 2005, 86(5): 773–795.

[48]

la Fleur, S. E. The effects of glucocorticoids on feeding behavior in rats. Physiology & Behavior, 2006, 89(1): 110–114.

[49]

Palmiter, R. D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends in Neurosciences, 2007, 30(8): 375–381.

[50]

Wise, R. A. Role of brain dopamine in food reward and reinforcement. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2006, 361(1471): 1149–1158.

[51]

Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., Ungless, M. A. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 2008, 152(4): 1024–1031.

[52]

Liu, S., Globa, A. K., Mills, F., Naef, L., Qiao, M., Bamji, S. X., Borgland, S. L. Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. PNAS, 2016, 113(9): 2520–2525.

[53]

Beier, K. T., Steinberg, E. E., DeLoach K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., Luo, L. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 2015, 162(3): 622–634.

[54]

Haber, S. N., Knutson, B. The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 2010, 35(1): 4–26.

[55]

Tiedemann, L. J., Schmid, S. M., Hettel, J., Giesen, K., Francke, P., Büchel, C., Brassen, S. Central insulin modulates food valuation via mesolimbic pathways. Nature Communications, 2017, 8: 16052.

[56]

Kupchik, Y. M., Brown, R. M., Heinsbroek, J. A., Lobo, M. K., Schwartz, D. J., Kalivas, P. W. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience, 2015, 18(9): 1230–1232.

[57]

O'Connor, E. C., Kremer, Y., Lefort, S., Harada, M., Pascoli, V., Rohner, C., Luscher, C. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron, 2015, 88(3): 553–564.

[58]

Aberman, J. E., Salamone, J. D. Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 1999, 92(2): 545–552.

[59]

Johnson, P. M., Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 2010, 13(5): 635–641.

[60]

Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L., Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 2013, 341(6153): 1517–1521.

[61]

Stamatakis, A. M., Van Swieten, M., Basiri, M. L., Blair, G. A., Kantak, P., Stuber, G. D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. The Journal of Neuroscience, 2016, 36(2): 302–311.

[62]

Jennings, J. H., Ung, R. L., Resendez, S. L., Stamatakis, A. M., Taylor, J. G., Huang, J., Veleta, K., Kantak, P. A., Aita, M., Shilling-Scrivo, K. et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell, 2015, 160(3): 516–527.

[63]

Navarro, M., Olney, J. J., Burnham, N. W., Mazzone, C. M., Lowery-Gionta, E. G., Pleil, K. E., Kash, T. L., Thiele, T. E. Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli. Neuropsychopharmacology, 2016, 41(6): 1505–1512.

[64]

Qualls-Creekmore, E., Yu, S., Francois, M., Hoang, J., Huesing, C., Bruce-Keller, A., Burk, D., Berthoud, H. R., Morrison, C. D., Münzberg, H. Galanin-expressing GABA neurons in the lateral hypothalamus modulate food reward and noncompulsive locomotion. The Journal of Neuroscience, 2017, 37(25): 6053–6065.

[65]

Wu, Z., Kim, E. R., Sun, H., Sun, H., Xu, Y., Mangieri, L. R., Li, D. P., Pan, H. L., Xu, Y., Arenkiel, B. R. et al. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. The Journal of Neuroscience, 2015, 35(8): 3312–3318.

[66]

Inutsuka, A., Inui, A., Tabuchi, S., Tsunematsu, T., Lazarus, M., Yamanaka, A. Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology, 2014, 85: 451–460.

[67]

Domingos, A. I., Sordillo, A., Dietrich, M. O., Liu, Z. W., Tellez, L. A., Vaynshteyn, J., Ferreira, J. G., Ekstrand, M. I., Horvath, T. L., de Araujo, I. E. et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. eLife, 2013, 2: e01462.

[68]

Leinninger, G. M., Jo, Y. H., Leshan, R. L., Louis, G. W., Yang, H. Y., Barrera, J. G., Wilson, H., Opland, D. M., Faouzi, M. A., Gong, Y. S. et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metabolism, 2009, 10(2): 89–98.

[69]

Betley, J. N., Xu, S., Cao, Z. F. H., Gong, R., Magnus, C. J., Yu, Y., Sternson, S. M. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature, 2015, 521(7551): 180–185.

[70]

Chen, Y., Lin, Y. C., Zimmerman, C. A., Essner, R. A., Knight, Z. A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife, 2016, 5: e18640.

[71]

Francke, P., Tiedemann, L. J., Menz, M. M., Beck, J., Buchel, C., Brassen, S. Mesolimbic white matter connectivity mediates the preference for sweet food. Scientific Reports, 2019, 9: 4349.

[72]

Wise, R. A. Catecholamine theories of reward: A critical review. Journal of Education and Health Promotion, 1978, 152(2): 215–247.

[73]

Bülbül, M., Tan, R., Gemici, B., Ozdem, S., Ustünel, I., Acar, N., Izgüt-Uysal, V. N. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides, 2010, 31(6): 1099–1108.

[74]

Garcia-Luna, C., Amaya, M.I., Alvarez-Salas, E., de Gortari, P. Prepro-orexin and feeding-related peptide receptor expression in dehydration-induced anorexia. Regulatory Peptides, 2010, 159(13): 54–60.

[75]

Karteris, E., Machado, R. J., Chen, J., Zervou, S., Hillhouse, E. W., Randeva, H. S. Food deprivation differentially modulates orexin receptor expression and signaling in rat hypothalamus and adrenal cortex. American Journal of Physiology Endocrinology and Metabolism, 2005, 288(6): E1089–E1100.

[76]

Yamanaka, A., Beuckmann, C. T., Willie, J. T., Hara, J., Tsujino, N., Mieda, M., Tominaga, M., Yagami Ki, Sugiyama, F., Goto, K. et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 2003, 38(5): 701–713.

[77]

Hagar, J. M., Macht, V. A., Wilson, S. P., Fadel, J. R. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience, 2017, 350: 124–132.

[78]

Furudono, Y., Ando, C., Yamamoto, C., Kobashi, M., and Yamamoto, T. Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats. Behavioural Brain Research, 2006, 175(2): 241–248.

[79]

Park, E. S., Yi, S. J., Kim, J. S., Lee, H. S., Lee, I. S., Seong, J. K., Jin, H. K., Yoon, Y. S. Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats. Journal of Veterinary Science, 2004, 5(4): 295–302.

[80]
Mitchell, C. S., Fisher, S. D., Yeoh, J. W., Pearl, A. J., Burton, N. J., Bains, J. S., McNally, G. P., Andrews, Z. A., Graham, B. A., Dayas, C. V. A ventral striatal-orexin/hypocretin circuit modulates approach but not consumption of food. Available at bioRxiv, 2020. https://doi.org/10.1101/2020.03.05.979468.
[81]

Muthmainah, M., Gogos, A., Sumithran, P., Brown, R. M. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. Journal of Neurochemistry, 2021, 157(5): 1473–1494.

[82]

Sweet, D. C., Levine, A. S., Kotz, C. M. Functional opioid pathways are necessary for hypocretin-1 (orexin-A)-induced feeding. Peptides, 2004, 25(2): 307–314.

Stress and Brain
Pages 66-77
Cite this article:
Wu X, Wang JJ, Wang X, et al. Progress of neural circuits mechanism underlying metabolic and hedonic feeding. Stress and Brain, 2022, 2(3): 66-77. https://doi.org/10.26599/SAB.2022.9060021

1563

Views

166

Downloads

1

Crossref

Altmetrics

Received: 21 July 2022
Accepted: 17 October 2022
Published: 14 November 2022
© The Author(s) 2022

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return