AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,010.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Factors contributing to cognitive dysfunction in patients suffering from COVID-19

Xi MeiChengying ZhengYuanyuan ZhangDongsheng Zhou( )Guolin Bian( )
Ningbo Kangning Hospital, Ningbo Key Laboratory of Sleep Medicine, Affiliated Tongyi Hospital of Medical College of Ningbo University, Ningbo 315201, China
Show Author Information

Graphical Abstract

Abstract

The corona virus disease 2019 (COVID-19) is an epidemic pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to pulmonary symptoms and a variety of physical symptoms, patients also experience symptoms of cognitive impairment. Previous studies have shown that many patients will experience varying degrees of cognitive decline in the subacute and prognostic stages after having COVID-19. Then, what are the factors that lead to cognitive decline? This article reviews and analyzes the inherent factors before the onset of the disease, the factors directly related to the disease, and the factors of hospital admission. In addition, this paper also summarizes the evaluation methods of cognitive decline and the possible mechanisms of the pathogenesis, thus providing corresponding clinical intervention ideas for inhibiting or regulating related factors.

References

[1]

Bulut, C., Kato, Y. Epidemiology of COVID-19. Turkish Journal of Medical Science, 2020, 50(9): Article 12.

[2]

Pezzini, A., Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nature Reviews Neurology, 2020, 16(11): 636–644.

[3]

Zhou, M., Zhang, X., Qu, J. Coronavirus disease 2019 (COVID-19): A clinical update. Frontiers of Medicine, 2020, 14(2): 126–135.

[4]

Beltrán-Corbellini, Á., Chico-García, J. L., Martínez-Poles, J., Rodríguez-Jorge, F., Natera-Villalba, E., Gómez-Corral, J., Gómez-López, A., Monreal, E., Parra-Díaz, P., Cortés-Cuevas J. L. et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case–control study. European Journal of Neurology, 2020, 27(9): 1738–1741.

[5]

Mattioli, F., Stampatori, C., Righetti, F., Sala, E., Tomasi, C., De Palma, G. Neurological and cognitive sequelae of Covid-19: A four month follow-up. Journal of Neurology, 2021, 268(12): 4422–4428.

[6]

First, M. B. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. The Journal of Nervous and Mental Disease, 2013, 201(9): 727–729.

[7]

Tavares-Júnior, J. W. L., de Souza, A. C. C., Borges, J. W. P., Oliveira, D. N., Siqueira-Neto, J. I., Sobreira-Neto, M. A., Braga-Neto, P. COVID-19 associated cognitive impairment: A systematic review. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 2022, 152: 77–97.

[8]

Tsapanou, A., Papatriantafyllou, J. D., Yiannopoulou, K., Sali, D., Kalligerou, F., Ntanasi, E., Zoi, P., Margioti, E., Kamtsadeli, V., Hatzopoulou, M. et al. The impact of COVID-19 pandemic on people with mild cognitive impairment/dementia and on their caregivers. International Journal of Geriatric Psychiatry, 2021, 36(4): 583–587.

[9]

Zubair, A. S., McAlpine, L. S., Gardin, T., Farhadian, S., Kuruvilla, D. E., Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurology, 2020, 77(8): 1018–1027.

[10]

Song, W. J., Hui, C. K. M., Hull, J. H., Birring, S. S., McGarvey, L., Mazzone, S. B., Chung, K. F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. The Lancet Respiratory Medicine, 2021, 9(5): 533–544.

[11]

Wang, Q., Davis, P. B., Gurney, M. E., Xu, R. COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimer’s & Dementia, 2021, 17(8): 1297–1306.

[12]

Itzhaki, R. F. COVID-19 and alzheimer’s disease: What is the connection? Journal of Alzheimer’s Disease, 2023, 91(4): 1273–1276.

[13]

Aghagoli, G., Gallo Marin, B., Katchur, N. J., Chaves-Sell, F., Asaad, W. F., Murphy, S. A. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care, 2021, 34(3): 1062–1071.

[14]

Siddig, A., Abbasher Hussien Mohamed Ahmed, K., Abdelrahman, A., Abbasher, A., Abbasher, A. A., Abbasher, M., Hussien, A. COVID-19 and cognitive impairment: A cross-sectional clinic-based study. Brain and Behavior, 2022, 12(3): e2538.

[15]

Pinna, P., Grewal, P., Hall, J. P., Tavarez, T., Dafer, R. M., Garg, R., Osteraas, N. D., Pellack, D. R., Asthana, A., Fegan, K. et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. Journal of the Neurological Sciences, 2020, 415: 116969.

[16]

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M. et al. Neurologic features in severe SARS-CoV-2 infection. The New England Journal of Medicine, 2020, 382(23): 2268–2270.

[17]

Damiano, R. F., Guedes, B. F., de Rocca, C. C., de Pádua Serafim, A., Castro, L. H. M., Munhoz, C. D., Nitrini, R., Filho, G. B., Miguel, E. C., Lucchetti, G., Forlenza, O. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272(1): 139–154.

[18]

Wang, L., Davis, P. B., Volkow, N. D., Berger, N. A., Kaelber, D. C., Xu, R. Association of COVID-19 with new-onset alzheimer’s disease. Journal of Alzheimer’s Disease, 2022, 89(2): 411–414.

[19]

Becker, J. H., Lin, J. J., Doernberg, M., Stone, K., Navis, A., Festa, J. R., Wisnivesky, J. P. Assessment of cognitive function in patients after COVID-19 infection. JAMA Network Open, 2021, 4(10): e2130645.

[20]

Sepúlveda-Loyola, W., Rodríguez-Sánchez, I., Pérez-Rodríguez, P., Ganz, F., Torralba, R., Oliveira, D. V., Rodríguez-Mañas, L. Impact of social isolation due to COVID-19 on health in older people: Mental and physical effects and recommendations. The Journal of Nutrition, Health and Aging, 2020, 24(9): 938–947.

[21]

Fabrazzo, M., Russo, A., Camerlengo, A., Tucci, C., Luciano, M., De Santis, V., Perris, F., Catapano, F., Coppola, N. Delirium and cognitive impairment as predisposing factors of COVID-19 infection in neuropsychiatric patients: A narrative review. Medicina (Kaunas, Lithuania), 2021, 57(11): 1244.

[22]

Mcloughlin, B. C., Miles, A., Webb, T. E., Knopp, P., Eyres, C., Fabbri, A., Humphries, F., Davis, D. Functional and cognitive outcomes after COVID-19 delirium. European Geriatric Medicine, 2020, 11(5): 857–862.

[23]

Alonso-Lana, S., Marquié, M., Ruiz, A., Boada, M. Cognitive and neuropsychiatric manifestations of COVID-19 and effects on elderly individuals with dementia. Frontiers in Aging Neuroscience, 2020, 12: 588872.

[24]

Padala, K. P., Parkes, C. M., Padala, P. R. Neuropsychological and functional impact of COVID-19 on mild cognitive impairment. American Journal of Alzheimer’s Disease and Other Dementias, 2020, 35. doi: 10.1177/1533317520960875.

[25]

Liu, Y. H., Wang, Y. R., Wang, Q. H., Chen, Y., Chen, X., Li, Y., Cen, Y., Xu, C., Hu, T., Liu, X. D. et al. Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Molecular Neurodegeneration, 2021, 16(1): 48.

[26]

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research, 2020, 7(1): 11.

[27]

Mazza, M. G., Palladini, M., De Lorenzo, R., Magnaghi, C., Poletti, S., Furlan, R., Ciceri, F., COVID-19 BioB Outpatient Clinic Study group, Rovere-Querini, P., Benedetti, F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain, Behavior, and Immunity, 2021, 94: 138–147.

[28]

Zhou, Y., Xu, J., Hou, Y., Leverenz, J. B., Kallianpur, A., Mehra, R., Liu, Y., Yu, H., Pieper, A. A., Jehi, L. et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimer’s Research & Therapy, 2021, 13(1): 110.

[29]

Uginet, M., Stancu, P., Bridel, C., Serratrice, J., Lalive, P. H., Coen, M. COVID-19-related acute encephalopathy: physiopathological hypothesis. Revue Médicale Suisse, 2021, 17(736): 810–815.

[30]

Tarsitani, L., Vassalini, P., Koukopoulos, A., Borrazzo, C., Alessi, F., Di Nicolantonio, C., Serra, R., Alessandri, F., Ceccarelli, G., Mastroianni, C. M. et al. Post-traumatic stress disorder among COVID-19 survivors at 3-month follow-up after hospital discharge. Journal of General Internal Medicine, 2021, 36(6): 1702–1707.

[31]

Bhattarai, J. J., Oehlert, M. E., Multon, K. D., Sumerall, S. W. Dementia and cognitive impairment among U.S. veterans with a history of MDD or PTSD: A retrospective cohort study based on sex and race. Journal of Aging and Health, 2019, 31(8): 1398–1422.

[32]

Ely, E. W., Inouye, S. K., Bernard, G. R., Gordon, S., Francis, J., May, L., Truman, B., Speroff, T., Gautam, S., Margolin, R. et al. Delirium in mechanically ventilated patients: Validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA, 2001, 286(21): 2703–2710.

[33]

Taheri Zadeh, Z., Rahmani, S., Alidadi, F., Joushi, S., Esmaeilpour, K. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments. International Journal of Clinical Practice, 2021, 75(12): e14949.

[34]

Becker, P. M. Overview of sleep management during COVID-19. Sleep Medicine, 2022, 91: 211–218.

[35]

Del Brutto, O. H., Wu, S., Mera, R. M., Costa, A. F., Recalde, B. Y., Issa, N. P. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. European Journal of Neurology, 2021, 28(10): 3245–3253.

[36]

Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska, 2016, 50(5): 1039–1052.

[37]

Koutroumanidis, M., Gratwicke, J., Sharma, S., Whelan, A., Tan, S. V., Glover, G. Alpha coma EEG pattern in patients with severe COVID-19 related encephalopathy. Clinical Neurophysiology, 2021, 132(1): 218–225.

[38]

Rubega, M., Ciringione, L., Bertuccelli, M., Paramento, M., Sparacino, G., Vianello, A., Masiero, S., Vallesi, A., Formaggio, E., Del Felice, A. High-density EEG sleep correlates of cognitive and affective impairment at 12-month follow-up after COVID-19. Clinical Neurophysiology, 2022, 140: 126–135.

[39]

Toniolo, S., Scarioni, M., Di Lorenzo, F., Hort, J., Georges, J., Tomic, S., Nobili, F., Frederiksen, K. S., Management Group of the EAN Dementia and Cognitive Disorders Scientific Panel. Dementia and COVID-19, a bidirectional liaison: Risk factors, biomarkers, and optimal health care. Journal of Alzheimer’s Disease, 2021, 82(3): 883–898.

[40]

Hosp, J. A., Dressing, A., Blazhenets, G., Bormann, T., Rau, A., Schwabenland, M., Thurow, J., Wagner, D., Waller, C., Niesen, W. D. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain, 2021, 144(4): 1263–1276.

[41]

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., HLH Across Speciality Collaboration, U. K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Cureus, 2020, 395(10229): 1033–1034.

[42]

Anka, A. U., Tahir, M. I., Abubakar, S. D., Alsabbagh, M., Zian, Z., Hamedifar, H., Sabzevari, A., Azizi, G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scandinavian Journal of Immunology, 2021, 93(4): e12998.

[43]

Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K., Tremblay MÈ. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. The Journal of Physiology, 2017, 595(6): 1929–1945.

[44]

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y., Wang, G. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 2020, 11: 827.

[45]

Vannorsdall, T. D., Brigham, E., Fawzy, A., Raju, S., Gorgone, A., Pletnikova, A., Lyketsos, C. G., Parker, A. M., Oh, E. S. Cognitive dysfunction, psychiatric distress, and functional decline after COVID-19. Journal of the Academy of Consultation-Liaison Psychiatry, 2022, 63(2): 133–143.

[46]

Crivelli, L., Palmer, K., Calandri, I., Guekht, A., Beghi, E., Carroll, W., Frontera, J., García-Azorín, D., Westenberg, E., Winkler, A. S. et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s & Dementia, 2022, 18(5): 1047–1066.

[47]

Fu, Y. W., Xu, H. S., Liu, S. J. COVID-19 and neurodegenerative diseases. European Review for Medical and Pharmacological Sciences, 2022, 26(12): 4535–4544.

[48]

Cristillo, V., Pilotto, A., Cotti Piccinelli, S., Zoppi, N., Bonzi, G., Gipponi, S., Sattin, D., Schiavolin, S., Raggi, A., Bezzi, M. et al. Age and subtle cognitive impairment are associated with long-term olfactory dysfunction after COVID-19 infection. Journal of the American Geriatrics Society, 2021, 69(10): 2778–2780.

[49]

Wang, C., Zhang, M., Garcia, Jr., G., Tian, E., Cui, Q., Chen, X., Sun, G., Wang, J., Arumugaswami, V. Shi, Y. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell, 2021, 28(2), 331–342.e5.

[50]

He, M., Wei, J. X., Mao, M., Zhao, G. Y., Tang, J. J., Feng, S., Lu, X. M., Wang, Y. T. Synaptic plasticity in PTSD and associated comorbidities: The function and mechanism for diagnostics and therapy. Current Pharmaceutical Design, 2018, 24(34): 4051–4059.

[51]

Langer, K., Wolf, O. T., Jentsch, V. L. Delayed effects of acute stress on cognitive emotion regulation. Psychoneuroendocrinology, 2021, 125: 105101.

[52]

Sachs-Ericsson, N., Blazer, D. G. The new DSM-5 diagnosis of mild neurocognitive disorder and its relation to research in mild cognitive impairment. Aging & Mental Health, 2015, 19(1): 2–12.

[53]

Wathelet, M., Horn, M., Creupelandt, C., Fovet, T., Baubet, T., Habran, E., Martignène, N., Vaiva, G., D'Hondt, F. Mental health symptoms of university students 15 months after the onset of the COVID-19 pandemic in France. JAMA Network Open, 2022, 5(12): e2249342.

[54]

Gavriatopoulou, M., Ntanasis-Stathopoulos, I., Korompoki, E., Fotiou, D., Migkou, M., Tzanninis, I.-G., Psaltopoulou, T., Kastritis, E., Terpos, E., Dimopoulos, M. A. Emerging treatment strategies for COVID-19 infection. Clinical and Experimental Medicine, 2021, 21(2): 167–179.

[55]

Wu, Y., Cheng, X., Jiang, G., Tang, H., Ming, S., Tang, L., Lu, J., Guo, C., Shan, H., Huang, X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes, 2021, 7(1): 61.

[56]

Kevadiya, B. D., Machhi, J., Herskovitz, J., Oleynikov, M. D. Diagnostics for SARS-CoV-2 infections. Nature Materials, 2021, 20(5): 593–605.

[57]

Chilamakuri, R., Agarwal, S. COVID-19: characteristics and therapeutics. Cells, 2021, 10(2): 206.

[58]

Lin, F., Su, Y., Weng, Y., Lin, X., Weng, H., Cai, G., Cai, G. The effects of bright light therapy on depression and sleep disturbances in patients with Parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials. Sleep Medicine, 2021, 83: 280–289.

[59]

Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., Sommer, I. E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychological Medicine, 2020, 50(15): 2465–2486.

[60]

Kremer, S., Jäger, H. R. Brain changes after COVID-19—how concerned should we be? Nature Reviews Neurology, 2022, 18(6): 321–322.

[61]

Delgado-Alonso, C., Valles-Salgado, M., Delgado-Álvarez, A., Yus, M., Gómez-Ruiz, N., Jorquera, M., Polidura, C., Gil, M. J., Marcos, A., Matías-Guiu, J. et al. Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. Journal of Psychiatric Research, 2022, 150: 40–46.

[62]

Hoang, K., Watt, H., Golemme, M., Perry, R. J., Ritchie, C., Wilson, D., Pickett, J., Fox, C., Howard, R., Malhotra, P. A. Noradrenergic add-on therapy with extended-release guanfacine in Alzheimer’s disease (NorAD): Study protocol for a randomised clinical trial and COVID-19 amendments. Trials, 2022, 23(1): 623.

[63]

Somaa, F. A., de Graaf, T. A., Sack, A. T. Transcranial magnetic stimulation in the treatment of neurological diseases. Frontiers in Neurology, 2022, 13: 793253.

[64]

Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behavior, & Immunity - Health, 2020, 9: 100163.

[65]

Bais, B., Hoogendijk, W. J. G., Lambregtse-van den Berg, M. P. Light therapy for mood disorders. Handbook of Clinical Neurology, 2021, 182: 49–61.

[66]

Vanderlind, W. M., Rabinovitz, B. B., Miao, I. Y., Oberlin, L. E., Bueno-Castellano, C., Fridman, C., Jaywant, A., Kanellopoulos, D. A systematic review of neuropsychological and psychiatric sequalae of COVID-19: Implications for treatment. Current Opinion in Psychiatry, 2021, 34(4): 420–433.

[67]

Reeves, R. R., Willoughby, S. G. Significant cognitive impairment likely associated with COVID-19 infection with relatively nonsevere symptoms. Journal of Osteopathic Medicine, 2022, 122(3): 119–123.

[68]

Barguilla, A., Fernández-Lebrero, A., Estragués-Gázquez, I., García-Escobar, G., Navalpotro-Gómez, I., Manero, R. M., Puente-Periz, V., Roquer, J., Puig-Pijoan, A. Effects of COVID-19 pandemic confinement in patients with cognitive impairment. Frontiers in Neurology, 2020, 11: 589901.

Stress and Brain
Pages 9-18
Cite this article:
Mei X, Zheng C, Zhang Y, et al. Factors contributing to cognitive dysfunction in patients suffering from COVID-19. Stress and Brain, 2023, 3(1): 9-18. https://doi.org/10.26599/SAB.2022.9060031

1718

Views

155

Downloads

0

Crossref

Altmetrics

Received: 19 December 2022
Revised: 21 February 2023
Accepted: 27 February 2023
Published: 11 April 2023
© The Author(s) 2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return