AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (998.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

An overview of mechanisms underlying the comorbidity of sleep and depression disorders in the elderly

Yuan Yao1,2Dan Guo1,2Fang-Lin Liu1,2Ying Han1( )
National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
Show Author Information

Abstract

Sleep disruption is common in older adults and has been linked to many negative health outcomes, including impaired cognitive, emotional, and interpersonal functioning and maladaptive metabolic changes. Sleep disturbance is the most common symptom in depressive patients, and it was formerly thought to be a major secondary manifestation of depression. Many longitudinal studies have identified insomnia as an independent risk factor for the development of emerging or recurrent depression in older adults, with bidirectional relationships between sleep quality and depression. This narrative review summarizes recent research or evidence on the sleep–depression association in older adults, as well as the potential common mechanisms underlying the comorbidity of sleep and depression disorders, focusing on the clock system, neurochemical substrates, and neurocircuits. A better understanding of the pathophysiological mechanisms underlying sleep disturbance and depression can assist psychiatrists in better managing this comorbidity.

References

[1]

Xue, R., Wan, Y., Sun, X., Zhang, X., Gao, W., Wu, W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol, 2019, 10: 2546.

[2]

Fang, H., Tu, S., Sheng, J., Shao, A., Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J Cell Mol Med, 2019, 23(4): 2324–2332.

[3]

Pandi-Perumal, S. R., Monti, J. M., Burman, D., Karthikeyan, R., BaHammam, A. S., Spence, D. W., Brown, G. M., Narashimhan, M. Clarifying the role of sleep in depression: A narrative review. Psychiatry Research, 2020, 291: 113239.

[4]

Jaussent, I., Bouyer, J., Ancelin, M. L., Akbaraly, T., Peres, K., Ritchie, K., Besset, A., Dauvilliers, Y. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep, 2011, 34(8): 1103–1110.

[5]

Wang, D., Zhao, J., Zhai, S., Ye, H., Bu, L., Fan, F. Does sleep disturbance predicts posttraumatic stress disorder and depression among college students during COVID-19 lockdown? A longitudinal survey. Front Public Health, 2022, 10: 986934.

[6]

Sun, X., Liu, B., Liu, S., Wu, D. J. H., Wang, J., Qian, Y., Ye, D., Mao, Y. Sleep disturbance and psychiatric disorders: A bidirectional Mendelian randomisation study. Epidemiol Psychiatr Sci, 2022, 31: e26.

[7]

Liu, X. L., Xia, X., Hu, F. J., Hao, Q. K., Hou, L. S., Sun, X. L., Zhang, G. C., Yue, J. R., Dong, B. R. The mediation role of sleep quality in the relationship between cognitive decline and depression. BMC Geriatrics, 2022, 22(1): 178.

[8]

Karimi, R., Mallah, N., Scherer, R., Rodríguez-Cano, R., Takkouche, B. Sleep quality as a mediator of the relation between depression and chronic pain: A systematic review and meta-analysis. British Journal of Anaesthesia, 2023, 130(6): 747–762.

[9]

Gottshall, J. L., Agyemang, A. A., O’Neil, M., Wei, G., Presson, A., Hewins, B., Fisher, D., Mithani, S., Shahim, P., Pugh, M. J. et al. Sleep quality: A common thread linking depression, post-traumatic stress, and post-concussive symptoms to biomarkers of neurodegeneration following traumatic brain injury. Brain Injury, 2022, 36(5): 633–643.

[10]

Reddy, A. B., O’Neill, J. S. Healthy clocks, healthy body, healthy mind. Trends in Cell Biology, 2010, 20(1): 36–44.

[11]

Wulff, K., Gatti, S., Wettstein, J. G., Foster, R. G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nature Reviews Neuroscience, 2010, 11(8): 589–599.

[12]

Germain, A., Kupfer, D. J. Circadian rhythm disturbances in depression. Human Psychopharmacology, 2008, 23(7): 571–585.

[13]

Mendoza, J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behavioural Brain Research, 2019, 376: 112186.

[14]

Edwards, B., O’Driscoll, D., Ali, A., Jordan, A., Trinder, J., Malhotra, A. Aging and sleep: Physiology and pathophysiology. Seminars in Respiratory and Critical Care Medicine, 2010, 31(5): 618–633.

[15]

Xian, H., Gonzalez, C., Deych, E., Farris, S., Ding, J., Shannon, W., McCall, W. V. Age-related effects on circadian phase in the sleep of patients with depression and insomnia. Behav Sleep Med, 2015, 13(3): 208–216.

[16]

Zhang, M. M., Ma, Y., Du, L. T., Wang, K., Li, Z., Zhu, W., Sun, Y. H., Lu, L., Bao, Y. P., Li, S. X. Sleep disorders and non-sleep circadian disorders predict depression: A systematic review and meta-analysis of longitudinal studies. Neurosci Biobehav Rev, 2022, 134: 104532.

[17]

Bunney, W. E., Bunney, B. G. Molecular clock genes in man and lower animals: Possible implications for circadian abnormalities in depression. Neuropsychopharmacology, 2000, 22(4): 335–345.

[18]

Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. et al. Interacting molecular loops in the mammalian circadian clock. Science, 2000, 288(5468): 1013–1019.

[19]

Gyorik, D., Eszlari, N., Gal, Z., Torok, D., Baksa, D., Kristof, Z., Sutori, S., Petschner, P., Juhasz, G., Bagdy, G. et al. Every night and every morn: Effect of variation in CLOCK gene on depression depends on exposure to early and recent stress. Front Psychiatry, 2021, 12: 687487.

[20]

Nader, N., Chrousos, G. P., Kino, T. Interactions of the circadian CLOCK system and the HPA axis. Trends in Endocrinology and Metabolism, 2010, 21(5): 277–286.

[21]

Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V., Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes & Development, 2006, 20(14): 1868–1873.

[22]

Duncan, M. J., Prochot, J. R., Cook, D. H., Tyler Smith, J., Franklin, K. M. Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Research, 2013, 1491: 44–53.

[23]

Gorbacheva, V. Y., Kondratov, R. V., Zhang, R., Cherukuri, S., Gudkov, A. V., Takahashi, J. S., Antoch, M. P. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA, 2005, 102(9): 3407–3412.

[24]

Roybal, K., Theobold, D., Graham, A., DiNieri, J. A., Russo, S. J., Krishnan, V., Chakravarty, S., Peevey, J., Oehrlein, N., Birnbaum, S. et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA, 2007, 104(15): 6406–6411.

[25]

Sheehan, P. W., Nadarajah, C. J., Kanan, M. F., Patterson, J. N., Novotny, B., Lawrence, J. H., King, M. W., Brase, L., Inman, C. E., Yuede, C. M. et al. An astrocyte BMAL1-BAG3 axis protects against alpha-synuclein and tau pathology. Neuron, 2023, 111(15): 2383–2398.e7.

[26]

Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., Lascorz, J., Depner, M., Holzberg, D., Soyka, M. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nature Medicine, 2005, 11: 35–42.

[27]

Yao, D., Li, R., Hao, J. H., Huang, H. Q., Wang, X. B., Ran, L. S., Fang, Y. Y., He, Y. Q., Wang, W., Liu, X. H. et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization. Translational Psychiatry, 2023, 13(1): 310.

[28]

Benedetti, F., Serretti, A., Colombo, C., Barbini, B., Lorenzi, C., Campori, E., Smeraldi, E. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2003, 123B(1): 23–26.

[29]

Serretti, A., Zanardi, R., Franchini, L., Artioli, P., Dotoli, D., Pirovano, A., Smeraldi, E. Pharmacogenetics of selective serotonin reuptake inhibitor response. Pharmacogenetics, 2004, 14(9): 607–613.

[30]

Benedetti, F., Serretti, A., Mandelli, L., Lorenzi, C., Pirovano, A., Colombo, C., Smeraldi, E. P.1.119 Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and CLOCK gene polymorphism. European Neuropsychopharmacology, 2003, 13: S225.

[31]

Serretti, A., Cusin, C., Benedetti, F., Mandelli, L., Pirovano, A., Zanardi, R., Colombo, C., Smeraldi, E. Insomnia improvement during antidepressant treatment andCLOCK gene polymorphism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 137B(1): 36–39.

[32]

Moore, R. Y., Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research, 1972, 42(1): 201–206.

[33]

Colwell, C. S. Linking neural activity and molecular oscillations in the SCN. Nature Reviews Neuroscience, 2011, 12(10): 553–569.

[34]

Kondratova, A. A., Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nature Reviews Neuroscience, 2012, 13(5): 325–335.

[35]

Lupi, D., Semo, M., Foster, R. G. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiology of Aging, 2012, 33(2): 383–392.

[36]

Hoekstra, M. M., Jan, M., Katsioudi, G., Emmenegger, Y., Franken, P. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2. Elife, 2021, 10: e69773.

[37]

Gibson, E. M., Williams, W. P. 3rd, Kriegsfeld, L. J. Aging in the circadian system: Considerations for health, disease prevention and longevity. Experimental Gerontology, 2009, 44(1–2): 51–56.

[38]

Sellix, M. T., Evans, J. A., Leise, T. L., Castanon-Cervantes, O., Hill, D. D., DeLisser, P., Block, G. D., Menaker, M., Davidson, A. J. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. The Journal of Neuroscience, 2012, 32(46): 16193–16202.

[39]

Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., Menaker, M., Block, G. D. Effects of aging on central and peripheral mammalian clocks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10801–10806.

[40]

Bedrosian, T. A., Fonken, L. K., Nelson, R. J. Endocrine effects of circadian disruption. Annu Rev Physiol, 2016, 78: 109–131.

[41]

Kondratov, R. V. A role of the circadian system and circadian proteins in aging. Ageing Research Reviews, 2007, 6(1): 12–27.

[42]

Ramkisoensing, A., Meijer, J. H. Synchronization of biological clock neurons by light and peripheral feedback systems promotes circadian rhythms and health. Frontiers in Neurology, 2015, 6: 128.

[43]

Hofman, M. A., Swaab, D. F. Living by the clock: The circadian pacemaker in older people. Ageing Research Reviews, 2006, 5(1): 33–51.

[44]

Skene, D. J., Swaab, D. F. Melatonin rhythmicity: Effect of age and Alzheimer’s disease. Experimental Gerontology, 2003, 38(1–2): 199–206.

[45]

Poza, J. J., Pujol, M., Ortega-Albás, J. J., Romero, O. Melatonin in sleep disorders. Neurología (English Edition), 2022, 37(7): 575–585.

[46]

Stehle, J. H., von Gall, C., Korf, H. W. Melatonin: A clock-output, a clock-input. Journal of Neuroendocrinology, 2003, 15(4): 383–389.

[47]

Fuller, P. M., Gooley, J. J., Saper, C. B. Neurobiology of the sleep-wake cycle: Sleep architecture, circadian regulation, and regulatory feedback. Journal of Biological Rhythms, 2006, 21(6): 482–493.

[48]

Saper, C. B., Scammell, T. E., Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063): 1257–1263.

[49]

Xia, T. J., Wang, Z., Jin, S. W., Liu, X. M., Liu, Y. G., Zhang, S. S., Pan, R. L., Jiang, N., Liao, Y. H., Yan, M. Z. et al. Melatonin-related dysfunction in chronic restraint stress triggers sleep disorders in mice. Front Pharmacol, 2023, 14: 1210393.

[50]

Monti, J. M. Serotonin control of sleep-wake behavior. Sleep Medicine Reviews, 2011, 15(4): 269–281.

[51]

Bhat, A., Pires, A. S., Tan, V., Babu Chidambaram, S., Guillemin, G. J. Effects of sleep deprivation on the tryptophan metabolism. International Journal of Tryptophan Research, 2020, 13: 1178646920970902.

[52]

Campino, C., Valenzuela, F. J., Torres-Farfan, C., Reynolds, H. E., Abarzua-Catalan, L., Arteaga, E., Trucco, C., Guzmán, S., Valenzuela, G. J., Seron-Ferre, M. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Horm Metab Res, 2011, 43(5): 337–342.

[53]

Fatemeh, G., Sajjad, M., Niloufar, R., Neda, S., Leila, S., Khadijeh, M. Effect of melatonin supplementation on sleep quality: A systematic review and meta-analysis of randomized controlled trials. Journal of Neurology, 2022, 269(1): 205–216.

[54]

Nogueira, H. A., de Castro, C. T., da Silva, D. C. G., Pereira, M. Melatonin for sleep disorders in people with autism: Systematic review and meta-analysis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2023, 123: 110695.

[55]

Tuft, C., Matar, E., Menczel Schrire, Z., Grunstein, R. R., Yee, B. J., Hoyos, C. M. Current insights into the risks of using melatonin as a treatment for sleep disorders in older adults. Clinical Interventions in Aging, 2023, 18: 49–59.

[56]

Gottesmann, C. GABA mechanisms and sleep. Neuroscience, 2002, 111(2): 231–239.

[57]

Plante, D. T., Jensen, J. E., Schoerning, L., Winkelman, J. W. Reduced γ-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: A link to major depressive disorder? Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2012, 37(6): 1548–1557.

[58]

Winkelman, J. W., Buxton, O. M., Jensen, J. E., Benson, K. L., O’Connor, S. P., Wang, W., Renshaw, P. F. Reduced brain GABA in primary insomnia: Preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep, 2008, 31(11): 1499–1506.

[59]

Hasler, G., van der Veen, J. W., Tumonis, T., Meyers, N., Shen, J., Drevets, W. C. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Archives of General Psychiatry, 2007, 64(2): 193–200.

[60]

Meyerhoff, D. J., Mon, A., Metzler, T., Neylan, T. C. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality. Sleep, 2014, 37(5): 893–900.

[61]

Yu, X., Li, W., Ma, Y., Tossell, K., Harris, J. J., Harding, E. C., Ba, W., Miracca, G., Wang, D., Li, L. et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nature Neuroscience, 2019, 22: 106–119.

[62]

Kim, S., Jo, K., Hong, K. B., Han, S. H., Suh, H. J. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. Pharmaceutical Biology, 2019, 57(1): 65–73.

[63]

McQuail, J. A., Frazier, C. J., Bizon, J. L. Molecular aspects of age-related cognitive decline: The role of GABA signaling. Trends in Molecular Medicine, 2015, 21(7): 450–460.

[64]

Li, S. C., Rieckmann, A. Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 2014, 29: 148–158.

[65]

Taylor, W. D., Zald, D. H., Felger, J. C., Christman, S., Claassen, D. O., Horga, G., Miller, J. M., Gifford, K., Rogers, B., Szymkowicz, S. M. et al. Influences of dopaminergic system dysfunction on late-life depression. Molecular Psychiatry, 2022, 27(1): 180–191.

[66]

Monti, J. M., Monti, D. The involvement of dopamine in the modulation of sleep and waking. Sleep Medicine Reviews, 2007, 11(2): 113–133.

[67]

Vgontzas, A. N., Tsigos, C., Bixler, E. O., Stratakis, C. A., Zachman, K., Kales, A., Vela-Bueno, A., Chrousos, G. P. Chronic insomnia and activity of the stress system. Journal of Psychosomatic Research, 1998, 45(1): 21–31.

[68]

Meyers, N., Fromm, S., Luckenbaugh, D. A., Drevets, W. C., Hasler, G. Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Research, 2011, 194(1): 73–78.

[69]

Hasegawa, E., Miyasaka, A., Sakurai, K., Cherasse, Y., Li, Y. L., Sakurai, T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science, 2022, 375(6584): 994–1000.

[70]

Qiu, M. H., Yao, Q. L., Vetrivelan, R., Chen, M. C., Lu, J. Nigrostriatal dopamine acting on globus pallidus regulates sleep. Cereb Cortex, 2016, 26(4): 1430–1439.

[71]

Paus, S., Brecht, H. M., Köster, J., Seeger, G., Klockgether, T., Wüllner, U. Sleep attacks, daytime sleepiness, and dopamine agonists in Parkinson’s disease. Mov Disord, 2003, 18(6): 659–667.

[72]

Salamone, J. D., Correa, M. The mysterious motivational functions of mesolimbic dopamine. Neuron, 2012, 76(3): 470–485.

[73]

Wu, M., Zhang, X., Feng, S., Freda, S. N., Kumari, P., Dumrongprechachan, V., Kozorovitskiy, Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron, 2024, 112(1): 141–154.e8.

[74]

Wing, Y. K., Lam, S. P., Zhang, J., Leung, E., Ho, C. L., Chen, S., Cheung, M. K., Li, S. X., Chan, J. W., Mok, V. et al. Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression. Neurology, 2015, 84(5): 516–522.

[75]

Gupta, D., Morley, J. E. Hypothalamic-pituitary-adrenal (HPA) axis and aging. Comprehensive Physiology, 2014, 4(4): 1495–1510.

[76]

Asarnow, L. D. Depression and sleep: What has the treatment research revealed and could the HPA axis be a potential mechanism? Current Opinion in Psychology, 2020, 34: 112–116.

[77]

de Feijter, M., Katimertzoglou, A., Tiemensma, J., Ikram, M. A., Luik, A. I. Polysomnography-estimated sleep and the negative feedback loop of the hypothalamic-pituitary-adrenal (HPA) axis. Psychoneuroendocrinology, 2022, 141: 105749.

[78]

Herman, J. P., Mueller, N. K., Figueiredo, H. Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Annals of the New York Academy of Sciences, 2004, 1018: 35–45.

[79]

Buckley, T. M., Schatzberg, A. F. Aging and the role of the HPA axis and rhythm in sleep and memory-consolidation. The American Journal of Geriatric Psychiatry, 2005, 13(5): 344–352.

[80]

Kimura, M., Curzi, M. L., Romanowsi, C. P. REM sleep alteration and depression. Arch Ital Biol, 2014, 152(2–3): 111–117.

[81]

Belvederi Murri, M., Pariante, C., Mondelli, V., Masotti, M., Atti, A. R., Mellacqua, Z., Antonioli, M., Ghio, L., Menchetti, M., Zanetidou, S. et al. HPA axis and aging in depression: Systematic review and meta-analysis. Psychoneuroendocrinology, 2014, 41: 46–62.

[82]

Menke, A. The HPA axis as target for depression. Curr Neuropharmacol, 2024, 22(5): 904–915.

[83]

Landgraf, D., McCarthy, M. J., Welsh, D. K. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Current Psychiatry Reports, 2014, 16(10): 483.

[84]

Bonnet, M. H., Arand, D. L. Hyperarousal and insomnia: State of the science. Sleep Medicine Reviews, 2010, 14(1): 9–15.

[85]

Mather, M. The affective neuroscience of aging. Annu Rev Psychol, 2016, 67: 213–238.

[86]

Matochik, J. A., Chefer, S. I., Lane, M. A., Woolf, R. I., Morris, E. D., Ingram, D. K., Roth, G. S., London, E. D. Age-related decline in striatal volume in monkeys as measured by magnetic resonance imaging. Neurobiology of Aging, 2000, 21(4): 591–598.

[87]

Haga, K. K., Khor, Y. P., Farrall, A., Wardlaw, J. M. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiology of Aging, 2009, 30(3): 353–363.

[88]

Paban, V., Fauvelle, F., Alescio-Lautier, B. Age-related changes in metabolic profiles of rat hippocampus and cortices. The European Journal of Neuroscience, 2010, 31(6): 1063–1073.

[89]

Nofzinger, E. A., Buysse, D. J., Germain, A., Price, J. C., Miewald, J. M., Kupfer, D. J. Functional neuroimaging evidence for hyperarousal in insomnia. The American Journal of Psychiatry, 2004, 161(11): 2126–2128.

[90]

Spiegelhalder, K., Regen, W., Prem, M., Baglioni, C., Nissen, C., Feige, B., Schnell, S., Kiselev, V. G., Hennig, J., Riemann, D. Reduced anterior internal capsule white matter integrity in primary insomnia. Hum Brain Mapp, 2014, 35(7): 3431–3438.

[91]

Altena, E., Van Der Werf, Y. D., Sanz-Arigita, E. J., Voorn, T. A., Rombouts, S. A., Kuijer, J. P., Van Someren, E. J. Prefrontal hypoactivation and recovery in insomnia. Sleep, 2008, 31(9): 1271–1276.

[92]

Hong, J., Lozano, D. E., Beier, K. T., Chung, S., Weber, F. Prefrontal cortical regulation of REM sleep. Nature Neuroscience, 2023, 26(10): 1820–1832.

[93]

Dong, H., Chen, Z. K., Guo, H., Yuan, X. S., Liu, C. W., Qu, W. M., Huang, Z. L. Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice. Curr Biol, 2022, 32(3): 600–613.e4.

[94]

Stoffers, D., Altena, E., van der Werf, Y. D., Sanz-Arigita, E. J., Voorn, T. A., Astill, R. G., Strijers, R. L. M., Waterman, D., Van Someren, E. J. W. The caudate: A key node in the neuronal network imbalance of insomnia? Brain, 2014, 137(2): 610–620.

[95]

Robbins, T. W. Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1481): 917–932.

[96]

Ballmaier, M., Toga, A. W., Blanton, R. E., Sowell, E. R., Lavretsky, H., Peterson, J., Pham, D., Kumar, A. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: An MRI-based parcellation of the prefrontal cortex. Am J Psychiatry, 2004, 161(1): 99–108.

[97]

Alexopoulos, G. S. Frontostriatal and limbic dysfunction in late-life depression. The American Journal of Geriatric Psychiatry, 2002, 10(6): 687–695.

[98]

Gold, P. W. The organization of the stress system and its dysregulation in depressive illness. Molecular Psychiatry, 2015, 20(1): 32–47.

[99]

Adamantidis, A. R., de Lecea, L. Sleep and the hypothalamus. Science, 2023, 382(6669): 405–412.

[100]

Han, Y., Yuan, K., Zheng, Y. B., Lu, L. Orexin receptor antagonists as emerging treatments for psychiatric disorders. Neuroscience Bulletin, 2020, 36(4): 432–448.

[101]

Buysse, D. J., Nofzinger, E. A., Germain, A., Meltzer, C. C., Wood, A., Ombao, H., Kupfer, D. J., Moore, R. Y. Regional brain glucose metabolism during morning and evening wakefulness in humans: Preliminary findings. Sleep, 2004, 27(7): 1245–1254.

[102]

Germain, A., Nofzinger, E. A., Meltzer, C. C., Wood, A., Kupfer, D. J., Moore, R. Y., Buysse, D. J. Diurnal variation in regional brain glucose metabolism in depression. Biol Psychiatry, 2007, 62(5): 438–445.

[103]

Neylan, T. C., Mueller, S. G., Wang, Z., Metzler, T. J., Lenoci, M., Truran, D., Marmar, C. R., Weiner, M. W., Schuff, N. Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biological Psychiatry, 2010, 68(5): 494–496.

[104]

Baglioni, C., Spiegelhalder, K., Regen, W., Feige, B., Nissen, C., Lombardo, C., Violani, C., Hennig, J., Riemann, D. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli. Sleep, 2014, 37(12): 1907–1917.

[105]

Schiel, J. E., Tamm, S., Holub, F., Petri, R., Dashti, H. S., Domschke, K., Feige, B., Lane, J. M., Riemann, D., Rutter, M. K. et al. Associations between sleep health and amygdala reactivity to negative facial expressions in the UK biobank cohort. Biol Psychiatry, 2022, 92(9): 693–700.

[106]

Chai, Y., Gehrman, P., Yu, M. C., Mao, T. X., Deng, Y., Rao, J., Shi, H., Quan, P., Xu, J., Zhang, X. C. et al. Enhanced amygdala-cingulate connectivity associates with better mood in both healthy and depressive individuals after sleep deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(26): e2214505120.

[107]

Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Jäger, M., Groll, C., Bottlender, R., Leinsinger, G., Möller, H. J. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry, 2003, 53(4): 338–344.

[108]

Drevets, W. C. Neuroimaging abnormalities in the amygdala in mood disorders. Annals of the New York Academy of Sciences, 2003, 985(1): 420–444.

[109]

Kamal, M., Gbahou, F., Guillaume, J. L., Daulat, A. M., Benleulmi-Chaachoua, A., Luka, M., Chen, P., Kalbasi Anaraki, D., Baroncini, M., Mannoury la Cour, C. et al. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem, 2015, 290(18): 11537–11546.

[110]

Hertenstein, E., Trinca, E., Wunderlin, M., Schneider, C. L., Züst, M. A., Fehér, K. D., Su, T., Straten, A. V., Berger, T., Baglioni, C. et al. Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: A systematic review and meta-analysis. Sleep Med Rev, 2022, 62: 101597.

[111]

Manber, R., Edinger, J. D., Gress, J. L., San Pedro-Salcedo, M. G., Kuo, T. F., Kalista, T. Cognitive behavioral therapy for insomnia enhances depression outcome in patients with comorbid major depressive disorder and insomnia. Sleep, 2008, 31(4): 489–495.

Stress and Brain
Pages 31-45
Cite this article:
Yao Y, Guo D, Liu F-L, et al. An overview of mechanisms underlying the comorbidity of sleep and depression disorders in the elderly. Stress and Brain, 2024, 4(1): 31-45. https://doi.org/10.26599/SAB.2023.9060007

1072

Views

321

Downloads

1

Crossref

Altmetrics

Received: 25 December 2023
Revised: 20 March 2024
Accepted: 22 March 2024
Published: 05 March 2024
© The Author(s) 2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return