AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Gut–vagus–NTS neural pathway in controlling feeding behaviors

School of Sport Science, Beijing Sport University, Beijing 100084, China
Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Abstract

Obesity has become a worldwide disease, posing a rapidly increasing challenge to the global healthcare system. The primary reason for obesity is that food intake exceeds the body’s needs. The central nervous system monitors the body’s energy status by continuously receiving peripheral gut-derived signals and functions as a master regulator in controlling feeding behaviors. Vagal afferents transmit gut-derived consumption signals from the periphery to the hindbrain (e.g., the nucleus of the solitary tract (NTS)). In contrast, vagal efferent nerves send commands to regulate peripheral organ activities. However, the precise role of the gut–vagus–NTS pathway and the gut–brain axis in regulating food intake is not yet fully understood. This review highlights the key roles of the NTS, vagal sensory neurons, and the gastrointestinal system in regulating feeding behaviors.

References

[1]
Blüher, M., Stumvoll, M. Diabetes and obesity. In: Diabetes Complications, Comorbidities and Related Disorders. Bonora, E., DeFronzo, R. eds. Cham, Springer International Publishing, 2018: 1–49.
[2]

Ferreira, S. Obesity and hypertension in children: A worldwide problem. Revista Portuguesa De Cardiologia, 2018, 37(5): 433–434.

[3]

Müller, M. J., Geisler, C. From the past to future: From energy expenditure to energy intake to energy expenditure. European Journal of Clinical Nutrition, 2017, 71(3): 358–364.

[4]

Bai, L., Mesgarzadeh, S., Ramesh, K. S., Huey, E. L., Liu, Y., Gray, L. A., Aitken, T. J., Chen, Y., Beutler, L. R., Ahn, J. S. et al. Genetic identification of vagal sensory neurons that control feeding. Cell, 2019, 179(5): 1129–1143.e23.

[5]

Berthoud, H.-R. The vagus nerve, food intake and obesity. Regulatory Peptides, 2008, 149(1–3): 15–25.

[6]

Browning, K. N., Verheijden, S., Boeckxstaens, G. E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology, 2017, 152(4): 730–744.

[7]

Heisler, L. K. An appetite for life: Brain regulation of hunger and satiety. Current Opinion in Pharmacology, 2017, 37: 100–106.

[8]

Badman, M. K., Flier, J. S. The gut and energy balance: Visceral allies in the obesity wars. Science, 2005, 307(5717): 1909–1914.

[9]

Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., Baskin, D. G. Central nervous system control of food intake. Nature, 2000, 404(6778): 661–671.

[10]

Ueno, H., Nakazato, M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. Journal of Diabetes Investigation, 2016, 7(6): 812–818.

[11]

Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdán, M. G., Diano, S., Horvath, T. L., Cone, R. D., Low, M. J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 2001, 411(6836): 480–484.

[12]

Grill, H. J., Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabolism, 2012, 16(3): 296–309.

[13]

Williams, E. K., Chang, R. B., Strochlic, D. E., Umans, B. D., Lowell, B. B., Liberles, S. D. Sensory neurons that detect stretch and nutrients in the digestive system. Cell, 2016, 166(1): 209–221.

[14]

Chen, J., Cheng, M., Wang, L., Zhang, L., Xu, D., Cao, P., Wang, F., Herzog, H., Song, S., Zhan, C. A vagal-NTS neural pathway that stimulates feeding. Current Biology, 2020, 30(20): 3986–3998.e5.

[15]

Morton, G. J., Meek, T. H., Schwartz, M. W. Neurobiology of food intake in health and disease. Nature Reviews Neuroscience, 2014, 15(6): 367–378.

[16]

Brookes, S. J. H., Spencer, N. J., Costa, M., Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nature Reviews Gastroenterology & Hepatology, 2013, 10(5): 286–296.

[17]

Cummings, D. E., Overduin, J. Gastrointestinal regulation of food intake. The Journal of Clinical Investigation, 2007, 117(1): 13–23.

[18]

Prescott, S. L., Liberles, S. D. Internal senses of the vagus nerve. Neuron, 2022, 110(4): 579–599.

[19]

Bonaz, B., Sinniger, V., Pellissier, S. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harbor Perspectives in Medicine, 2019, 9(8): a034199.

[20]

Kim, K. S., Seeley, R. J., Sandoval, D. A. Signalling from the periphery to the brain that regulates energy homeostasis. Nature Reviews Neuroscience, 2018, 19(4): 185–196.

[21]

Chavan, S. S., Pavlov, V. A., Tracey, K. J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity, 2017, 46(6): 927–942.

[22]

Daubert, D. L., McCowan, M., Erdos, B., Scheuer, D. A. Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. The Journal of Physiology, 2012, 590(19): 4881–4895.

[23]

Yuan, H., Silberstein, S. D. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache: the Journal of Head and Face Pain, 2016, 56(1): 71–78.

[24]
Chambers, A. P., Woods, S. C. The role of neuropeptide Y in energy homeostasis. In: Appetite Control. Joost, H. G. ed. Handbook of Experimental Pharmacology, Vol. 209. 2012: 23–45.
[25]

Han, W. F., Tellez, L. A., Perkins, M. H., Perez, I. O., Qu, T. R., Ferreira, J., Ferreira, T. L., Quinn, D., Liu, Z. W., Gao, X. B. et al. A neural circuit for gut-induced reward. Cell, 2018, 175(3): 665–678.e23.

[26]

Affleck, V. S., Coote, J. H., Pyner, S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience, 2012, 219: 48–61.

[27]

Ganchrow, D., Ganchrow, J. R., Cicchini, V., Bartel, D. L., Kaufman, D., Girard, D., Whitehead, M. C. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. The Journal of Comparative Neurology, 2014, 522(7): 1565–1596.

[28]

Kawai, Y. Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: An interface between local microcircuits and global macrocircuits. Frontiers in Neuroanatomy, 2018, 12: 63.

[29]

Chang, R. B. Body thermal responses and the vagus nerve. Neuroscience Letters, 2019, 698: 209–216.

[30]

Yu, C. D., Xu, Q. J., Chang, R. B. Vagal sensory neurons and gut-brain signaling. Current Opinion in Neurobiology, 2020, 62: 133–140.

[31]

Berthoud, H. R. Vagal and hormonal gut-brain communication: From satiation to satisfaction. Neurogastroenterology and Motility, 2008, 20(Suppl. 1): 64–72.

[32]

Wren, A. M. Gut hormones and appetite control. Gastroenterology, 2007, 132(6): 2116–2130.

[33]

Kaelberer, M. M., Buchanan, K. L., Klein, M. E., Barth, B. B., Montoya, M. M., Shen, X. L., Bohórquez, D. V. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 361(6408): eaat5236.

[34]

Kentish, S. J., Page, A. J. The role of gastrointestinal vagal afferent fibres in obesity. The Journal of Physiology, 2015, 593(4): 775–786.

[35]

Cone, R. D. Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 2005, 8(5): 571–578.

[36]

Burdyga, G. Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology, 2003, 124(1): 129–139.

[37]

Parise, E. M., Lilly, N., Kay, K., Dossat, A. M., Seth, R., Overton, J. M., Williams, D. L. Evidence for the role of hindbrain orexin-1 receptors in the control of meal size. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2011, 301(6): R1692–R1699.

[38]

Liu, J., Conde, K., Zhang, P., Lilascharoen, V., Xu, Z., Lim, B. K., Seeley, R. J., Zhu, J. J., Scott, M. M., Pang, Z. P. Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus. Neuron, 2017, 96(4): 897–909.e5.

[39]

Palmiter, R. D. Neural circuits that suppress appetite: Targets for treating obesity? Obesity (Silver Spring, Md), 2017, 25(8): 1299–1301.

[40]

Kvetnansky, R., Sabban, E. L., Palkovits, M. Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 2009, 89(2): 535–606.

[41]

Moore, R. Y., Bloom, F. E. Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Annual Review of Neuroscience, 1979, 2: 113–168.

[42]

Aklan, I., Sayar Atasoy, N., Yavuz, Y., Ates, T., Coban, I., Koksalar, F., Filiz, G., Topcu, I. C., Oncul, M., Dilsiz, P. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metabolism, 2020, 31(2): 313–326.e5.

[43]

Andresen, M. C., Fawley, J. A., Hofmann, M. E. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Frontiers in Neuroscience, 2013, 6: 191.

[44]

Cornejo, M. P., De Francesco, P. N., Romero, G. G., Portiansky, E. L., Zigman, J. M., Reynaldo, M., Perello, M. Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. Brain Structure and Function, 2018, 223(7): 3133–3147.

[45]

Cui, R. J., Li, X. J., Appleyard, S. M. Ghrelin inhibits visceral afferent activation of catecholamine neurons in the solitary tract nucleus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2011, 31(9): 3484–3492.

[46]

Rinaman, L. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2003, 23(31): 10084–10092.

[47]

Rinaman, L., Hoffman, G. E., Dohanics, J., Le, W. W., Stricker, E. M., Verbalis, J. G. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. The Journal of Comparative Neurology, 1995, 360(2): 246–256.

[48]

Roman, C. W., Derkach, V. A., Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nature Communications, 2016, 7: 11905.

[49]

Ho, J. M., Anekonda, V. T., Thompson, B. W., Zhu, M. Y., Curry, R. W., Hwang, B. H., Morton, G. J., Schwartz, M. W., Baskin, D. G., Appleyard, S. M. et al. Hindbrain oxytocin receptors contribute to the effects of circulating oxytocin on food intake in male rats. Endocrinology, 2014, 155(8): 2845–2857.

[50]

Balcita-Pedicino, J. J., Rinaman, L. Noradrenergic axon terminals contact gastric preautonomic neurons in the paraventricular nucleus of the hypothalamus in rats. The Journal of Comparative Neurology, 2007, 501(4): 608–618.

[51]

Travagli, R. A., Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nature Reviews Gastroenterology & Hepatology, 2016, 13(7): 389–401.

[52]

Hudson, B. Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation. Physiology & Behavior, 2004, 82(2–3): 241–250.

[53]

D'Agostino, G., Lyons, D. J., Cristiano, C., Burke, L. K., Madara, J. C., Campbell, J. N., Garcia, A. P., Land, B. B., Lowell, B. B., Dileone, R. J. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife, 2016, 5: 12225.

[54]

Roman, C. W., Sloat, S. R., Palmiter, R. D. A tale of two circuits: CCKNTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience, 2017, 358: 316–324.

[55]

Cheng, W. W., Gordian, D., Ludwig, M. Q., Pers, T. H., Seeley, R. J., Myers, M. G. Hindbrain circuits in the control of eating behaviour and energy balance. Nature Metabolism, 2022, 4(7): 826–835.

[56]

Coll, A. P. Effects of pro-opiomelanocortin (POMC) on food intake and body weight: Mechanisms and therapeutic potential? Clinical Science (London, England: 1979), 2007, 113(4): 171–182.

[57]

Appleyard, S. M., Bailey, T. W., Doyle, M. W., Jin, Y. H., Smart, J. L., Low, M. J., Andresen, M. C. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: Regulation by cholecystokinin and opioids. The Journal of Neuroscience, 2005, 25(14): 3578–3585.

[58]

Fan, W., Ellacott, K. L. J., Halatchev, I. G., Takahashi, K., Yu, P. X., Cone, R. D. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nature Neuroscience, 2004, 7(4): 335–336.

[59]

Zhan, C., Zhou, J. F., Feng, Q. R., Zhang, J. E., Lin, S. L., Bao, J. H., Wu, P., Luo, M. M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2013, 33(8): 3624–3632.

[60]

Wang, D. Q., He, X. B., Zhao, Z., Feng, Q. R., Lin, R., Sun, Y., Ding, T., Xu, F. Q., Luo, M. M., Zhan, C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Frontiers in Neuroanatomy, 2015, 9: 40.

[61]

Li, A. J., Wang, Q., Dinh, T. T., Ritter, S. Simultaneous silencing of Npy and Dbh expression in hindbrain A1/C1 catecholamine cells suppresses glucoprivic feeding. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2009, 29(1): 280–287.

[62]

Ritter, S. Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiology & Behavior, 2006, 89(4): 490–500.

[63]

Everitt, B. J., Hokfelt, T., Terenius, L., Tatemoto, K., Mutt, V., Goldstein, M. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience, 1984, 11(2): 443–462.

[64]

Li, A. J., Ritter, S. Glucoprivation increases expression of neuropeptide Y mRNA in hindbrain neurons that innervate the hypothalamus. The European Journal of Neuroscience, 2004, 19(8): 2147–2154.

[65]

Taylor, K. Hypothalamic and hindbrain NPY, AGRP and NE increase consummatory feeding responses. Physiology & Behavior, 2007, 90(5): 744–750.

[66]

Ruohonen, S. T., Pesonen, U., Moritz, N., Kaipio, K., Röyttä, M., Koulu, M., Savontaus, E. Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: A novel model of increased adiposity and impaired glucose tolerance. Diabetes, 2008, 57(6): 1517–1525.

[67]

Zhang, L., Lee, I. C., Enriquez, R. F., Lau, J., Vahatalo, L. H., Baldock, P. A., Savontaus, E., Herzog, H. Stress- and diet-induced fat gain is controlled by NPY in catecholaminergic neurons. Molecular Metabolism, 2014, 3(5): 581–591.

[68]

Faulconbridge, L. F. Caudal brainstem delivery of ghrelin induces fos expression in the nucleus of the solitary tract, but not in the arcuate or paraventricular nuclei of the hypothalamus. Brain Research, 2008, 1218: 151–157.

[69]

Füzesi, T., Wittmann, G., Liposits, Z., Lechan, R. M., Fekete, C. Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-Y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Endocrinology, 2007, 148(11): 5442–5450.

[70]

Ritter, S., Bugarith, K., Dinh, T. T. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. The Journal of Comparative Neurology, 2001, 432(2): 197–216.

[71]

Gaykema, R. P., Newmyer, B. A., Ottolini, M., Raje, V., Warthen, D. M., Lambeth, P. S., Niccum, M., Yao, T., Huang, Y. R., Schulman, I. G. et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. The Journal of Clinical Investigation, 2017, 127(3): 1031–1045.

[72]
Velásquez, D. A., Beiroa, D., Vázquez, M. J., Romero, A., López, M., Diéguez, C., Nogueiras, R. Central GLP-1 actions on energy metabolism. In: Vitamins and Hormones. Litwack, G. ed. Academic Press, 2010: 303–317.
[73]

Chen, X. Y., Chen, L., Yang, W., Xie, A. M. GLP-1 suppresses feeding behaviors and modulates neuronal electrophysiological properties in multiple brain regions. Frontiers in Molecular Neuroscience, 2021, 14: 793004.

[74]

Liu, J., Pang, Z. P. Glucagon-like peptide-1 drives energy metabolism on the synaptic highway. The FEBS Journal, 2016, 283(24): 4413–4423.

[75]

Barrera, J. G., Sandoval, D. A., D'Alessio, D. A., Seeley, R. J. GLP-1 and energy balance: An integrated model of short-term and long-term control. Nature Reviews Endocrinology, 2011, 7(9): 507–516.

[76]

Brierley, D. I., Holt, M. K., Singh, A., de Araujo, A., McDougle, M., Vergara, M., Afaghani, M. H., Lee, S. J., Scott, K., Maske, C. et al. Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3(2): 258–273.

[77]

Holt, M. K., Pomeranz, L. E., Beier, K. T., Reimann, F., Gribble, F. M., Rinaman, L. Synaptic inputs to the mouse dorsal vagal complex and its resident preproglucagon neurons. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2019, 39(49): 9767–9781.

[78]

Wang, X. F., Liu, J.-J., Xia, J., Liu, J., Mirabella, V., Pang, Z., P. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Reports, 2015, 12(5): 726–733.

[79]

Alhadeff, A. L., Rupprecht, L. E., Hayes, M. R. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology, 2012, 153(2): 647–658.

[80]

Holt, M. K., Richards, J. E., Cook, D. R., Brierley, D. I., Williams, D. L., Reimann, F., Gribble, F. M., Trapp, S. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes, 2019, 68(1): 21–33.

[81]

Alhadeff, A. L., Mergler, B. D., Zimmer, D. J., Turner, C. A., Reiner, D. J., Schmidt, H. D., Grill, H. J., Hayes, M. R. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology, 2017, 42(7): 1471–1479.

[82]

Fortin, S. M., Lipsky, R. K., Lhamo, R., Chen, J., Kim, E., Borner, T., Schmidt, H. D., Hayes, M. R. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Science Translational Medicine, 2020, 12(533): eaay8071.

[83]

Richard, J. E., Anderberg, R. H., Göteson, A., Gribble, F. M., Reimann, F., Skibicka, K. P. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One, 2015, 10(3): e0119034.

[84]

Hayes, M. R., Bradley, L., Grill, H. J. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology, 2009, 150(6): 2654–2659.

[85]

Hayes, M. R. Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiology & Behavior, 2010, 100(5): 503–510.

[86]

Scott, M. M., Williams, K. W., Rossi, J., Lee, C. E., Elmquist, J. K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. Journal of Clinical Investigation, 2011, 121(6): 2413–2421.

[87]

Adams, J. M., Pei, H. J., Sandoval, D. A., Seeley, R. J., Chang, R. B., Liberles, S. D., Olson, D. P. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes, 2018, 67(8): 1538–1548.

[88]

Breisch, S. T., Zemlan, F. P., Hoebel, B. G. Hyperphagia and obesity following serotonin depletion by intraventricular p-chlorophenylalanine. Science, 1976, 192(4237): 382–385.

[89]

Lam, D. D., Zhou, L., Vegge, A., Xiu, P. Y., Christensen, B. T., Osundiji, M. A., Yueh, C. Y., Evans, M. L., Heisler, L. K. Distribution and neurochemical characterization of neurons within the nucleus of the solitary tract responsive to serotonin agonist-induced hypophagia. Behavioural Brain Research, 2009, 196(1): 139–143.

[90]

Wu, Q., Clark, M. S., Palmiter, R. D. Deciphering a neuronal circuit that mediates appetite. Nature, 2012, 483(7391): 594–597.

[91]

Marston, O. J., Heisler, L. K. Targeting the serotonin 2C receptor for the treatment of obesity and type 2 diabetes. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2009, 34(1): 252–253.

[92]

Berglund, E. D., Liu, C., Sohn, J. W., Liu, T. M., Kim, M. H., Lee, C. E., Vianna, C. R., Williams, K. W., Xu, Y., Elmquist, J. K. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. The Journal of Clinical Investigation, 2013, 123(12): 5061–5070.

[93]

Yao, T., He, J. H., Cui, Z. C., Wang, R. W., Bao, K. X., Huang, Y. R., Wang, R., Liu, T. M. Central 5-HTR2C in the control of metabolic homeostasis. Frontiers in Endocrinology, 2021, 12: 694204.

[94]

D'Agostino, G. Jr, Lyons, D., Cristiano, C., Lettieri, M., Olarte-Sanchez, C., Burke, L.K., Greenwald-Yarnell, M., Cansell, C., Doslikova, B., Georgescu, T. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metabolism, 2018, 28(4): 619–630.e5.

[95]

Cheng, W. W. Jr, Gonzalez, I., Pan, W., Tsang, A. H., Adams, J., Ndoka, E., Gordian, D., Khoury, B., Roelofs, K., Evers, S. S. et al. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. Cell Metabolism, 2020, 31(2): 301–312.e5.

[96]

Fodor, M., Gallatz, K., Palkovits, i. Calcitonin gene-related peptide innervation of A2-catecholamine cells in the nucleus of the solitary tract of the rat. Brain Research, 1995, 690(1): 141–144.

[97]

Lutz, T. A. Amylin decreases meal size in rats. Physiology & Behavior, 1995, 58(6): 1197–1202.

[98]

Lutz, T. A. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides, 1998, 19(2): 309–317.

[99]

Halatchev, I. G., Cone, R. D. Peripheral administration of PYY3-36 produces conditioned taste aversion in mice. Cell Metabolism, 2005, 1(3): 159–168.

[100]

Cheng, W. W., Ndoka, E., Maung, J. N., Pan, W., Rupp, A. C., Rhodes, C. J., Olson, D. P., Myers, M. G. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nature Communications, 2021, 12: 5175.

[101]

Gao, Q., Horvath, T. L. Neuronal control of energy homeostasis. FEBS Letters, 2008, 582(1): 132–141.

[102]

Faulconbridge, L. F., Cummings, D. E., Kaplan, J. M., Grill, H. J. Hyperphagic effects of brainstem ghrelin administration. Diabetes, 2003, 52(9): 2260–2265.

[103]

Sun, Y. X., Ahmed, S., Smith, R. G. Deletion of ghrelin impairs neither growth nor appetite. Molecular and Cellular Biology, 2003, 23(22): 7973–7981.

[104]

Chuang, J. C., Perello, M., Sakata, I., Osborne-Lawrence, S., Savitt, J. M., Lutter, M., Zigman, J. M. Ghrelin mediates stress-induced food-reward behavior in mice. The Journal of Clinical Investigation, 2011, 121(7): 2684–2692.

[105]

Bassi, J. K., Connelly, A. A., Butler, A. G., Liu, Y. H., Ghanbari, A., Farmer, D. G. S., Jenkins, M. W., Melo, M. R., McDougall, S. J., Allen, A. M. Analysis of the distribution of vagal afferent projections from different peripheral organs to the nucleus of the solitary tract in rats. The Journal of Comparative Neurology, 2022, 530(17): 3072–3103.

[106]

Wachsmuth, H. R., Weninger, S. N., Duca, F. A. Role of the gut-brain axis in energy and glucose metabolism. Experimental & Molecular Medicine, 2022, 54(4): 377–392

[107]

Moura-Assis, A., Friedman, J. M., Velloso, L. A. Gut-to-brain signals in feeding control. American Journal of Physiology Endocrinology and Metabolism, 2021, 320(2): E326–E332.

[108]

Krieger, J. P., Arnold, M., Pettersen, K. G., Lossel, P., Langhans, W., Lee, S. J. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes, 2016, 65(1): 34–43.

[109]

Berthoud, H. R., Albaugh, V. L., Neuhuber, W. L. Gut-brain communication and obesity: Understanding functions of the vagus nerve. The Journal of Clinical Investigation, 2021, 131(10): e143770.

[110]

Klok, M. D., Jakobsdottir, S., Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Reviews, 2007, 8(1): 21–34.

[111]

Perelló, M., Cornejo, M. P., De Francesco, P. N., Fernandez, G., Gautron, L., Valdivia, L. S. The controversial role of the vagus nerve in mediating ghrelin's actions: Gut feelings and beyond. IBRO Neuroscience Reports, 2022, 12: 228–239.

[112]

Lebrun, B., Bariohay, B., Jean, A. Control of food intake: Neurobiological aspects. Bulletin De l'Académie Vétérinaire De France, 2006, 159(4): 289–300.

[113]

Waise, T. M. Z., Dranse, H. J., Lam, T. K. T. The metabolic role of vagal afferent innervation. Nature Reviews Gastroenterology & Hepatology, 2018, 15(10): 625–636.

[114]

Castañeda, T. R. Ghrelin in the regulation of body weight and metabolism. Frontiers in Neuroendocrinology, 2010, 31(1): 44–60.

[115]

Date, Y. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, 2002, 123(4): 1120–1128.

[116]

Egerod, K. L., Engelstoft, M. S., Grunddal, K. V., Nøhr, M. K., Secher, A., Sakata, I., Pedersen, J., Windeløv, J. A., Füchtbauer, E. M., Olsen, J. et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology, 2012, 153(12): 5782–5795.

[117]

Chaudhri, O., Small, C., Bloom, S. Gastrointestinal hormones regulating appetite. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2006, 361(1471): 1187–1209.

[118]

Chambers, A. P., Sandoval, D. A., Seeley, R. J. Integration of satiety signals by the central nervous system. Current Biology, 2013, 23(9): R379–R388.

[119]

D'Agostino, G., Luckman, S. M. Brainstem peptides and peptidergic neurons in the regulation of appetite. Current Opinion in Endocrine and Metabolic Research, 2022, 24: 100339.

[120]

Batterham, R. L., Heffron, H., Kapoor, S., Chivers, J. E., Chandarana, K., Herzog, H., Le Roux, C. W., Thomas, E. L., Bell, J. D., Withers, D. J. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metabolism, 2006, 4(3): 223–233.

[121]

Coll, A. P., Farooqi, I.S., O'Rahilly, S. The hormonal control of food intake. Cell, 2007, 129(2): 251–262.

[122]

Murphy, K. G., Bloom, S. R. Gut hormones and the regulation of energy homeostasis. Nature, 2006, 444(7121): 854–859.

[123]

Raybould, H. E. Mechanisms of CCK signaling from gut to brain. Current Opinion in Pharmacology, 2007, 7(6): 570–574.

[124]

Baptista, V., Zheng, Z. L., Coleman, F. H., Rogers, R. C., Travagli, R. A. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. Journal of Neurophysiology, 2005, 94(4): 2763–2771.

[125]

Peters, J. H. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiology & Behavior, 2006, 89(4): 477–485.

[126]

Korbonits, M. Ghrelin—a hormone with multiple functions. Frontiers in Neuroendocrinology, 2004, 25(1): 27–68.

[127]

Schellekens, H. Ghrelin signalling and obesity: At the interface of stress, mood and food reward. Pharmacology & Therapeutics, 2012, 135(3): 316–326.

[128]

DiPatrizio, N. V. The thrifty lipids: Endocannabinoids and the neural control of energy conservation. Trends in Neurosciences, 2012, 35(7): 403–411.

[129]

DiPatrizio, N. V., Piomelli, D. Intestinal lipid-derived signals that sense dietary fat. The Journal of Clinical Investigation, 2015, 125(3): 891–898.

[130]

Burdyga, G., Varro, A., Dimaline, R., Thompson, D. G., Dockray, G. J. Expression of cannabinoid CB1 receptors by vagal afferent neurons: Kinetics and role in influencing neurochemical phenotype. American Journal of Physiology Gastrointestinal and Liver Physiology, 2010, 299(1): G63–G69.

[131]

DiPatrizio, N. V. Endocannabinoids in the gut. Cannabis and Cannabinoid Research, 2016, 1(1): 67–77.

[132]

di Marzo, V., Goparaju, S. K., Wang, L., Liu, J., Bátkai, S., Járai, Z., Fezza, F., Miura, G. I., Palmiter, R. D., Sugiura, T. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 2001, 410(6830): 822–825.

[133]

Gómez, R., Navarro, M., Ferrer, B., Trigo, J. M., Bilbao, A., Del Arco, I., Cippitelli, A., Nava, F., Piomelli, D., Rodríguez de Fonseca, F. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2002, 22(21): 9612–9617.

[134]

Simon, V., Cota, D. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: Past, present and future. European Journal of Endocrinology, 2017, 176(6): R309–R324.

[135]

Burdyga, G., Lal, S., Varro, A., Dimaline, R., Thompson, D. G., Dockray, G. J. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2004, 24(11): 2708–2715.

[136]

de Lartigue, G. Role of the vagus nerve in the development and treatment of diet-induced obesity. The Journal of Physiology, 2016, 594(20): 5791–5815.

[137]

Schauer, P. R., Kashyap, S. R., Wolski, K., Brethauer, S. A., Kirwan, J. P., Pothier, C. E., Thomas, S., Abood, B., Nissen, S. E., Bhatt, D. L. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. The New England Journal of Medicine, 2012, 366(17): 1567–1576.

[138]

Pelot, N. A., Grill, W. M. Effects of vagal neuromodulation on feeding behavior. Brain Research, 2018, 1693: 180–187.

Stress and Brain
Pages 19-34
Cite this article:
Chen J, Zhan C. Gut–vagus–NTS neural pathway in controlling feeding behaviors. Stress and Brain, 2023, 3(1): 19-34. https://doi.org/10.26599/SAB.2023.9060033

2110

Views

571

Downloads

2

Crossref

Altmetrics

Received: 15 July 2022
Revised: 21 October 2022
Accepted: 20 December 2022
Published: 09 June 2023
© The Author(s) 2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return