AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (946.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Deep brain lymphatic vessels: a new player in brain functions, neurodegenerative diseases and psychiatric disorders

Bingqing GuoJunzhuang ChangNashat Abumaria( )
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
Show Author Information

Abstract

The brain was previously believed to be an “immune privileged” organ without an immune system. However, recent discoveries have shown a connection between the peripheral lymphatic system and the brain. This review article provides an overview of the three distinct lymphatic systems within the brain - the glymphatic, meningeal, and parenchymal systems - with a focus on the recently discovered deep brain parenchymal lymphatic vessels. The article also discusses how these lymphatic systems are regulated by various pathological conditions, including Alzheimer’s disease, Parkinson’s disease, and other neurological disorders. By shedding light on the link between these diseases and the brain lymphatic systems, the article emphasizes the importance of understanding these systems for potential therapeutic interventions to treat neurodegenerative and psychiatric disorders.

References

[1]

Hu, D., Li, L., Li, S. F., Wu, M. Y., Ge, N. N., Cui, Y. X., Lian, Z., Song, J. X., Chen, H. Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 133: 99–111.

[2]

Oliver, G. Lymphatic vasculature development. Nature Reviews Immunology, 2004, 4(1): 35–45.

[3]

Tammela, T., Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4): 460–476.

[4]

González-Loyola, A., Petrova, T. V. Development and aging of the lymphatic vascular system. Advanced Drug Delivery Reviews, 2021, 169: 63–78.

[5]

Schulte-Merker, S., Sabine, A., Petrova, T. V. Lymphatic vascular morphogenesis in development, physiology, and disease. The Journal of Cell Biology, 2011, 193(4): 607–618.

[6]

Randolph, G. J., Ivanov, S., Zinselmeyer, B. H., Scallan, J. P. The lymphatic system: Integral roles in immunity. Annual Review of Immunology, 2017, 35: 31–52.

[7]

Antila, S., Karaman, S., Nurmi, H., Airavaara, M., Voutilainen, M. H., Mathivet, T., Chilov, D., Li, Z., Koppinen, T., Park, J. H. et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med, 2017, 214(12): 3645–3667.

[8]

Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., Benveniste, H., Vates, G. E., Deane, R., Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β. Sci Transl Med, 2012, 4(147): 147ra111.

[9]

Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., Derecki, N. C., Castle, D., Mandell, J. W., Lee, K. S. et al. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523: 337–341.

[10]

Absinta, M., Ha, S. K., Nair, G., Sati, P., Luciano, N. J., Palisoc, M., Louveau, A., Zaghloul, K. A., Pittaluga, S., Kipnis, J. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife, 2017, 6: e29738.

[11]

Da Mesquita, S., Louveau, A., Vaccari, A., Smirnov, I., Cornelison, R. C., Kingsmore, K. M., Contarino, C., Onengut-Gumuscu, S., Farber, E., Raper, D. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 2018, 560(7717): 185–191.

[12]

Ma, Q. L., Ineichen, B. V., Detmar, M., Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nature Communications, 2017, 8(1): 1434.

[13]

Bolte, A. C., Dutta, A. B., Hurt, M. E., Smirnov, I., Kovacs, M. A., McKee, C. A., Ennerfelt, H. E., Shapiro, D., Nguyen, B. H., Frost, E. L. et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nature Communications, 2020, 11: 4524.

[14]

Ding, X. B., Wang, X. X., Xia, D. H., Liu, H., Tian, H. Y., Fu, Y., Chen, Y. K., Qin, C., Wang, J. Q., Xiang, Z. et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nature Medicine, 2021, 27: 411–418.

[15]

Zou, W., Pu, T., Feng, W., Lu, M., Zheng, Y., Du, R., Xiao, M., Hu, G. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener, 2019, 8: 7.

[16]

Schwartz, N., Chalasani, M. L. S., Li, T. M., Feng, Z. H., Shipman, W. D., Lu, T. T. Lymphatic function in autoimmune diseases. Frontiers in Immunology, 2019, 10: 519.

[17]

Baluk, P., Fuxe, J., Hashizume, H., Romano, T., Lashnits, E., Butz, S., Vestweber, D., Corada, M., Molendini, C., Dejana, E. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med, 2007, 204(10): 2349–2362.

[18]

Hansen, K. C., D’Alessandro, A., Clement, C. C., Santambrogio, L. Lymph formation, composition and circulation: A proteomics perspective. International Immunology, 2015, 27(5): 219–227.

[19]

Trzewik, J., Mallipattu, S. K., Artmann, G. M., Delano, F. A., Schmid-Schonbein, G. W. Evidence for a second valve system in lymphatics: Endothelial microvalves. The FASEB Journal, 2001, 15(10): 1711–1717.

[20]

Schmid-Schönbein, G. W. Microlymphatics and lymph flow. Physiological Reviews, 1990, 70(4): 987–1028.

[21]

Gashev, A. A. Physiologic aspects of lymphatic contractile function. Annals of the New York Academy of Sciences, 2002, 979(1): 178–187.

[22]

Muthuchamy, M., Gashev, A., Boswell, N., Dawson, N., Zawieja, D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J, 2003, 17(8): 920–922.

[23]

Zarkada, G., Chen, X., Zhou, X., Lange, M., Zeng, L., Lv, W., Zhang, X., Li, Y., Zhou, W., Liu, K. et al. Chylomicrons regulate lacteal permeability and intestinal lipid absorption. Circ Res, 2023, 133(4): 333–349.

[24]

Gancz, D., Perlmoter, G., Yaniv, K. Formation and growth of cardiac lymphatics during embryonic development, heart regeneration, and disease. Cold Spring Harb Perspect Biol, 2020, 12(6): a037176.

[25]

Juszyński, M., Ciszek, B., Stachurska, E., Jabłońska, A., Ratajska, A. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev Dyn, 2008, 237(10): 2973–2986.

[26]

Flaht-Zabost, A., Gula, G., Ciszek, B., Czarnowska, E., Jankowska-Steifer, E., Madej, M., Niderla-Bielińska, J., Radomska-Leśniewska, D., Ratajska, A. Cardiac mouse lymphatics: Developmental and anatomical update. Anat Rec (Hoboken), 2014, 297(6): 1115–1130.

[27]

Klotz, L., Norman, S., Vieira, J. M., Masters, M., Rohling, M., Dubé, K. N., Bollini, S., Matsuzaki, F., Carr, C. A., Riley, P. R. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522: 62–67.

[28]

Cahill, T. J., Choudhury, R. P., Riley, P. R. Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 2017, 16(10): 699–717.

[29]

Vieira, J. M., Norman, S., Villa Del Campo, C., Cahill, T. J., Barnette, D. N., Gunadasa-Rohling, M., Johnson, L. A., Greaves, D. R., Carr, C. A., Jackson, D. G. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest, 2018, 128(8): 3402–3412.

[30]

Trincot, C. E., Xu, W., Zhang, H., Kulikauskas, M. R., Caranasos, T. G., Jensen, B. C., Sabine, A., Petrova, T. V., Caron, K. M. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43. Circ Res, 2019, 124(1): 101–113.

[31]

Cain, J. C., Grindlay, J.H. Lymph from liver and thoracic duct; an experimental study. Surg Gynecol Obstet, 1947, 85(5): 558–562.

[32]

Chung, C., Iwakiri, Y. The lymphatic vascular system in liver diseases: Its role in ascites formation. Clinical and Molecular Hepatology, 2013, 19(2): 99–104.

[33]

Comparini, L. Lymph vessels of the liver in man. Journal of Vascular Research, 1969, 6(5): 262–274.

[34]

Trutmann, M., Sasse, D. The lymphatics of the liver. Anatomy and Embryology, 1994, 190(3): 201–209.

[35]

Tanaka, M., Iwakiri, Y. The hepatic lymphatic vascular system: Structure, function, markers, and lymphangiogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2(6): 733–749.

[36]

Vollmar, B., Wolf, B., Siegmund, S., Katsen, A. D., Menger, M. D. Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. The American Journal of Pathology, 1997, 151(1): 169–175.

[37]

Corpechot, C., Barbu, V., Wendum, D., Kinnman, N., Rey, C., Poupon, R., Housset, C., Rosmorduc, O. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology, 2002, 35(5): 1010–1021.

[38]

Lukacs-Kornek, V. The role of lymphatic endothelial cells in liver injury and tumor development. Frontiers in Immunology, 2016, 7: 548.

[39]

Russell, P. S., Hong, J., Windsor, J. A., Itkin, M., Phillips, A. R. J. Renal lymphatics: Anatomy, physiology, and clinical implications. Frontiers in Physiology, 2019, 10: 251.

[40]

Cockett, A. T. K. Lymphatic network of kidney I. anatomic and physiologic considerations. Urology, 1977, 9(2): 125–129.

[41]

Donnan, M. D., Kenig-Kozlovsky, Y., Quaggin, S. E. The lymphatics in kidney health and disease. Nature Reviews Nephrology, 2021, 17(10): 655–675.

[42]

Hasegawa, S., Nakano, T., Torisu, K., Tsuchimoto, A., Eriguchi, M., Haruyama, N., Masutani, K., Tsuruya, K., Kitazono, T. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab Invest, 2017, 97(12): 1439–1452.

[43]

Pei, G., Yao, Y., Yang, Q., Wang, M., Wang, Y., Wu, J., Wang, P., Li, Y., Zhu, F., Yang, J. et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv, 2019, 5(6): eaaw5075.

[44]

Liu, J., Yu, C. Lymphangiogenesis and lymphatic barrier dysfunction in renal fibrosis. Int J Mol Sci, 2022, 23(13): 6970.

[45]

Salah, H. M., Biegus, J., Fudim, M. Role of the renal lymphatic system in heart failure. Current Heart Failure Reports, 2023, 20(2): 113–120.

[46]

Sun, B. L., Wang, L. H., Yang, T., Sun, J. Y., Mao, L. L., Yang, M. F., Yuan, H., Colvin, R. A., Yang, X. Y. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol, 2018, 163–164: 118–143.

[47]

Kress, B. T., Iliff, J. J., Xia, M., Wang, M., Wei, H. S., Zeppenfeld, D., Xie, L., Kang, H., Xu, Q., Liew, J. A. et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 2014, 76(6): 845–861.

[48]

Mader, S., Brimberg, L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells, 2019, 8(2): E90.

[49]

Meli, R., Pirozzi, C., Pelagalli, A. New perspectives on the potential role of aquaporins (AQPs) in the physiology of inflammation. Frontiers in Physiology, 2018, 9: 101.

[50]

Lundgaard, I., Li, B. M., Xie, L. L., Kang, H. Y., Sanggaard, S., Haswell, J. D. R., Sun, W., Goldman, S., Blekot, S., Nielsen, M. et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 2015, 6: 6807.

[51]

Achariyar, T. M., Li, B., Peng, W., Verghese, P. B., Shi, Y., McConnell, E., Benraiss, A., Kasper, T., Song, W., Takano, T. et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener, 2016, 11(1): 74.

[52]

Lundgaard, I., Lu, M. L., Yang, E., Peng, W., Mestre, H., Hitomi, E., Deane, R., Nedergaard, M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab, 2017, 37(6): 2112–2124.

[53]

Ikeshima-Kataoka, H. Neuroimmunological implications of AQP4 in astrocytes. Int J Mol Sci, 2016, 17(8): E1306.

[54]

Ikeshima-Kataoka, H., Abe, Y., Abe, T., Yasui, M. Immunological function of aquaporin-4 in stab-wounded mouse brain in concert with a pro-inflammatory cytokine inducer, osteopontin. Molecular and Cellular Neurosciences, 2013, 56: 65–75.

[55]

Rana, T., Behl, T., Shamsuzzaman, M., Singh, S., Sharma, N., Sehgal, A., Alshahrani, A. M., Aldahish, A., Chidambaram, K., Dailah, H. G. et al. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal, 2022, 96: 110359.

[56]

Mogensen, F. L., Delle, C., Nedergaard, M. The glymphatic system (en)during inflammation. Int J Mol Sci, 2021, 22(14): 7491.

[57]

Gaberel, T., Gakuba, C., Goulay, R., Martinez De Lizarrondo, S., Hanouz, J. L., Emery, E., Touze, E., Vivien, D., Gauberti, M. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis? Stroke, 2014, 45(10): 3092–3096.

[58]

Peng, W., Achariyar, T. M., Li, B., Liao, Y., Mestre, H., Hitomi, E., Regan, S., Kasper, T., Peng, S., Ding, F. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis, 2016, 93: 215–225.

[59]

Si, X., Dai, S., Fang, Y., Tang, J., Wang, Z., Li, Y., Song, Z., Chen, Y., Liu, Y., Zhao, G. et al. Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson’s disease. J Adv Res, 2024, 56: 125–136.

[60]

Xia, M. S., Yang, L., Sun, G. F., Qi, S., Li, B. M. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: The function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3): 365–379.

[61]

Kong, H., Sha, L. L., Fan, Y., Xiao, M., Ding, J. H., Wu, J., Hu, G. Requirement of AQP4 for antidepressive efficiency of fluoxetine: Implication in adult hippocampal neurogenesis. Neuropsychopharmacology, 2009, 34(5): 1263–1276.

[62]

Simon, M., Wang, M. X., Ismail, O., Braun, M., Schindler, A. G., Reemmer, J., Wang, Z., Haveliwala, M. A., O’Boyle, R. P., Han, W. Y. et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimers Res Ther, 2022, 14(1): 59.

[63]

Sun, C., Lin, L., Yin, L., Hao, X., Tian, J., Zhang, X., Ren, Y., Li, C., Yang, Y. Acutely inhibiting AQP4 with TGN-020 improves functional outcome by attenuating edema and peri-infarct astrogliosis after cerebral ischemia. Front Immunol, 2022, 13: 870029.

[64]

Cui, H. L., Wang, W. K., Zheng, X. H., Xia, D. H., Liu, H., Qin, C., Tian, H. Y., Teng, J. F. Decreased AQP4 expression aggravates α-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. Journal of Molecular Neuroscience, 2021, 71(12): 2500–2513.

[65]

Feng, S., Wu, C. Y., Zou, P. B., Deng, Q. T., Chen, Z., Li, M., Zhu, L., Li, F. H., Liu, T. C. Y., Duan, R. et al. High-intensity interval training ameliorates Alzheimer’s disease-like pathology by regulating astrocyte phenotype-associated AQP4 polarization. Theranostics, 2023, 13(10): 3434–3450.

[66]

Sandrone, S., Moreno-Zambrano, D., Kipnis, J., van Gijn, J. A (delayed) history of the brain lymphatic system. Nature Medicine, 2019, 25(4): 538–540.

[67]

Schwalbe, G. Der Arachnoidealraum, ein Lymphraum und sein Zusammenhang mit dem Perichorioidealraum. Z med Wiss, 1869, 7: 465.

[68]

Földi, M., Gellért, A., Kozma, M., Poberai, M., Zoltán, O. T., Csanda, E. New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anatomica, 1966, 64(4): 498–505.

[69]

Aspelund, A., Antila, S., Proulx, S. T., Karlsen, T. V., Karaman, S., Detmar, M., Wiig, H., Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med, 2015, 212(7): 991–999.

[70]

Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., Holtzman, D. M., Zlokovic, B. V. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest, 2008, 118(12): 4002–4013.

[71]

Zhao, Z., Sagare, A. P., Ma, Q. Y., Halliday, M. R., Kong, P., Kisler, K., Winkler, E. A., Ramanathan, A., Kanekiyo, T., Bu, G. J. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nature Neuroscience, 2015, 18: 978–987.

[72]

Mildner, A., Schlevogt, B., Kierdorf, K., Böttcher, C., Erny, D., Kummer, M. P., Quinn, M., Brück, W., Bechmann, I., Heneka, M. T. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci, 2011, 31(31): 11159–11171.

[73]

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell, 2017, 169(7): 1276–1290.e17.

[74]

Da Mesquita, S., Papadopoulos, Z., Dykstra, T., Brase, L., Farias, F. G., Wall, M., Jiang, H., Kodira, C. D., de Lima, K. A., Herz, J. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858): 255–260.

[75]

Dai, W. P., Yang, M. Q., Xia, P., Xiao, C., Huang, S. Y., Zhang, Z., Cheng, X., Li, W. C., Jin, J., Zhang, J. Y. et al. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nature Communications, 2022, 13: 4825.

[76]

Li, X. J., Qi, L. L., Yang, D., Hao, S. J., Zhang, F., Zhu, X. G., Sun, Y., Chen, C., Ye, J., Yang, J. et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nature Neuroscience, 2022, 25: 577–587.

[77]

Ahn, J. H., Cho, H., Kim, J. H., Kim, S. H., Ham, J. S., Park, I., Suh, S. H., Hong, S. P., Song, J. H., Hong, Y. K. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572: 62–66.

[78]

Koh, L., Zakharov, A., Johnston, M. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Research, 2005, 2: 6.

[79]

Weller, R. O., Djuanda, E., Yow, H. Y., Carare, R. O. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathologica, 2009, 117(1): 1–14.

[80]

Cserr, H. F., Harling-Berg, C. J., Knopf, P. M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol, 1992, 2(4): 269–276.

[81]

Prineas, J. W. Multiple sclerosis: Presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science, 1979, 203(4385): 1123–1125.

[82]

Mezey É, Szalayova, I., Hogden, C. T., Brady, A., Dósa Á, Sótonyi, P., Palkovits, M. An immunohistochemical study of lymphatic elements in the human brain. Proc Natl Acad Sci USA, 2021, 118(3): e2002574118.

[83]

Siret, C., van Lessen, M., Bavais, J., Jeong, H. W., Reddy Samawar, S. K., Kapupara, K., Wang, S., Simic, M., de Fabritus, L., Tchoghandjian, A. et al. Deciphering the heterogeneity of the Lyve1+ perivascular macrophages in the mouse brain. Nature Communications, 2022, 13: 7366.

[84]

Chang, J. Z., Guo, B. Q., Gao, Y., Li, W., Tong, X. Y., Feng, Y., Abumaria, N. Characteristic features of deep brain lymphatic vessels and their regulation by chronic stress. Research, 2023, 6: 0120.

[85]

Öz, E. ‘Game changer’ method lets scientists peer into mice. Science, 2023, 380(6644): 443.

[86]

Liu, X. G., Hua, Q., Peng, T. T., Chang, K. X., Deng, C. G., Zhang, J. N., Yan, X. Y., Wang, C. X., Yan, K., Cai, Q. Y. et al. Histomorphological analysis of perfusion parameters and CNS lymphatic vessels in mice: An experimental method study. Neuroreport, 2024, 35(3): 160–169.

[87]

Liston, C., Miller, M. M., Goldwater, D. S., Radley, J. J., Rocher, A. B., Hof, P. R., Morrison, J. H., McEwen, B. S. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci, 2006, 26(30): 7870–7874.

[88]

Ulrich-Lai, Y. M., Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 2009, 10(6): 397–409.

[89]

McEwen, B. S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 2007, 87(3): 873–904.

[90]

Yoshii, T. The role of the thalamus in post-traumatic stress disorder. Int J Mol Sci, 2021, 22(4): 1730.

[91]

Leuner, B., Shors, T. J. Stress, anxiety, and dendritic spines: What are the connections? Neuroscience, 2013, 251: 108–119.

[92]

Roozendaal, B., McEwen, B. S., Chattarji, S. Stress, memory and the amygdala. Nature Reviews Neuroscience, 2009, 10(6): 423–433.

[93]

Luine, V., Villegas, M., Martinez, C., McEwen, B. S. Repeated stress causes reversible impairments of spatial memory performance. Brain Research, 1994, 639(1): 167–170.

[94]

Brunson, K. L., Kramár, E., Lin, B., Chen, Y., Colgin, L, L., Yanagihara, T. K., Lynch, G., Baram, T, Z. Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci, 2005, 25(41): 9328–9338.

[95]

Cook, S. C., Wellman, C. L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology, 2004, 60(2): 236–248.

[96]

Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci, 2002, 22(15): 6810–6818.

[97]

Vyas, A., Jadhav, S., Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience, 2006, 143(2): 387–393.

[98]

Qin, M., Xia, Z., Huang, T., Smith, C. B. Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience, 2011, 194: 282–290.

[99]

Hill, M. N., Hillard, C. J., McEwen, B. S. Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex, 2011, 21(9): 2056–2064.

[100]

Glaser, R., Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: Implications for health. Nature Reviews Immunology, 2005, 5(3): 243–251.

[101]

Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., Brizard, B., El Hage, W., Surget, A., Belzung, C. et al. Neuroinflammation and depression: A review. Eur J Neurosci, 2021, 53(1): 151–171.

[102]

Zefferino, R., Di Gioia, S., Conese, M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain and Behavior, 2021, 11(2): e01960.

[103]

Le, C. P., Nowell, C. J., Kim-Fuchs, C., Botteri, E., Hiller, J. G., Ismail, H., Pimentel, M. A., Chai, M. G., Karnezis, T., Rotmensz, N. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nature Communications, 2016, 7: 10634.

[104]

Shilpa, B. M., Bhagya, V., Harish, G., Srinivas Bharath, M. M., Shankaranarayana Rao, B. S. Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2017, 76: 88–100.

[105]

Howell, K. R., Kutiyanawalla, A., Pillai, A. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex. PLoS One, 2011, 6(5): e20198.

[106]

Karkkainen, M. J., Mäkinen, T., Alitalo, K. Lymphatic endothelium: A new frontier of metastasis research. Nature Cell Biology, 2002, 4(1): E2–E5.

Stress and Brain
Pages 46-59
Cite this article:
Guo B, Chang J, Abumaria N. Deep brain lymphatic vessels: a new player in brain functions, neurodegenerative diseases and psychiatric disorders. Stress and Brain, 2024, 4(1): 46-59. https://doi.org/10.26599/SAB.2024.9060001

628

Views

114

Downloads

0

Crossref

Altmetrics

Received: 24 January 2024
Revised: 08 March 2024
Accepted: 26 March 2024
Published: 05 March 2024
© The Author(s) 2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return