Energy sector decarbonization is a key battleground in China’s march toward carbon neutrality, and understanding what it means and takes is crucial for its policy-making and sustainable implementation. Here we analyze the structural challenges and review the necessary supporting technologies and systems of energy sector decarbonization in China. It requires not only supporting technologies such as energy efficiency, zero-carbon energy, and carbon capture, utilization and storage, but also enabling systems such as the transmission, distribution and storage system, carbon governance mechanisms, and risk alleviation systems addressing risks of renewables waste and critical mineral supply. A technology roadmap highlighting techno-economics, environmental impact, technology innovation, and carbon market mechanisms is needed to facilitate energy sector decarbonization in China.
Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y. M., et al. (2018). Net-zero emissions energy systems. Science, 360: eaas9793.
Pye, S., Broad, O., Bataille, C., Brockway, P., Daly, H. E., Freeman, R., Gambhir, A., Geden, O., Rogan, F., Sanghvi, S., et al. (2021). Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 21: 222–231.
Azevedo, I., Bataille, C., Bistline, J., Clarke, L., Davis, S. (2021). Net-zero emissions energy systems: What we know and do not know. Energy and Climate Change, 2: 100049.
Jaxa-Rozen, M., Trutnevyte, E. (2021). Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change, 11: 266–273.
Meng, J., Way, R., Verdolini, E., Diaz Anadon, L. (2021). Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proceedings of the National Academy of Sciences of the United States of America, 118: e1917165118.
Lin, J., Khanna, N., Liu, X., Teng, F., Wang, X. (2019). China’s non-CO2 greenhouse gas emissions: Future trajectories and mitigation options and potential. Scientific Reports, 9: 16095.
Zhang, D., Huang, X. D., Zhong, J. T., Guo, L. F., Guo, S. Y., Wang, D. Y., Miao, C. H., Zhang, X. L., Zhang, X. Y. (2023). A representative CO2 emissions pathway for China toward carbon neutrality under the Paris Agreement’s 2 ℃ target. Advances in Climate Change Research, 14: 941–951.
Guan, Y., Shan, Y., Huang, Q., Chen, H., Wang, D., Hubacek, K. (2021). Assessment to China’s recent emission pattern shifts. Earth’s Future, 9: e2021EF002241.
He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Chang, S., Ou, X., Guo, S., Tian, Z., Gu, A., et al. (2020). Comprehensive report on China’s Long-Term Low-Carbon Development Strategies and Pathways. Chinese Journal of Population, Resources and Environment, 18: 263–295.
Duan, H., Zhou, S., Jiang, K., Bertram, C., Harmsen, M., Kriegler, E., van Vuuren, D. P., Wang, S., Fujimori, S., Tavoni, M., et al. (2021). Assessing China’s efforts to pursue the 1.5 ℃ warming limit. Science, 372: 378–385.
Zhang, S., Chen, W. (2022). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13: 87.
Pan, X., Wang, L., Chen, W., du Pont, Y. R., Clarke, L., Yang, L., Wang, H., Lu, X., He, J. (2022). Decarbonizing China’s energy system to support the Paris climate goals. Sci Bull, 67: 1406–1409.
Liu, Z., Ciais, P., Deng, Z., Davis, S. J., Zheng, B., Wang, Y., Cui, D., Zhu, B., Dou, X., Ke, P., et al. (2020). Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data, 7: 392.
Hu, H. (1935). The distribution of China’s population. Acta Geogr Sin, 2: 33–73.
Ding, J., Cheng, C., Zhang, W., Tian, Y. (2021). The ideological origins and geographical demarcation significance of Hu Huanyong Line. Acta Geogr Sin, 76: 1317–1333.
Wang, C., Wang, Y., Tong, X., Ulgiati, S., Liang, S., Xu, M., Wei, W., Li, X., Jin, M., Mao, J. (2020). Mapping potentials and bridging regional gaps of renewable resources in China. Renewable and Sustainable Energy Reviews, 134: 110337.
Fan, J. L., Wei, S., Shen, S., Xu, M., Zhang, X. (2021). Geological storage potential of CO2 emissions for China’s coal-fired power plants: A city-level analysis. International Journal of Greenhouse Gas Control, 106: 103278.
Erickson, P., Kartha, S., Lazarus, M., Tempest, K. (2015). Assessing carbon lock-in. Environmental Research Letters, 10: 084023.
Van der Ploeg, F., Rezai, A. (2020). Stranded assets in the transition to a carbon-free economy. Annual Review of Resource Economics, 12: 281–298.
Zhang, W., Zhou, Y., Gong, Z., Kang, J., Zhao, C., Meng, Z., Zhang, J., Zhang, T., Yuan, J. (2023). Quantifying stranded assets of the coal-fired power in China under the Paris Agreement target. Climate Policy, 23: 11–24.
Pan, X., Ma, X., Zhang, Y., Shao, T., Peng, T., Li, X., Wang, L., Chen, W. (2023). Implications of carbon neutrality for power sector investments and stranded coal assets in China. Energy Economics, 121: 106682.
He, J. K. (2021). Low carbon transformation of energy and conomy aiming for the peaking of carbon emission and carbon neutrality. J Environ Econ Manage, 6: 1–9.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42: 153–168.
McCauley, D., Heffron, R. (2018). Just transition: Integrating climate, energy and environmental justice. Energy Policy, 119: 1–7.
Wu, S., Gao, J., Wei, B., Zhang, J., Guo, G., Wang, J., Deng, H., Liu, L., He, S., Xu, E. (2020). Building a resilient society to reduce natural disaster risks. Science Bulletin, 65: 1785–1787.
Cullen, J. M., Allwood, J. M. (2010). The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy, 38: 75–81.
Guo, S., Liu, Y., Zhao, W., Li, J., Hu, G., Kong, H., Gu, Y., Xu, B., Huang, X., Zheng, Y., et al. (2023). Technological development pathway for carbon neutrality in China. Science Bulletin, 68: 117–120.
Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., et al. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2: 100180.
Jenkins, J. D., Luke, M., Thernstrom, S. (2018). Getting to zero carbon emissions in the electric power sector. Joule, 2: 2498–2510.
Li, J., Herdem, M. S., Nathwani, J., Wen, J. Z. (2023). Methods and applications for artificial intelligence, big data, internet of things, and blockchain in smart energy management. Energy and AI, 11: 100208.
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., et al. (2023). Tackling climate change with machine learning. ACM Computing Surveys, 55: 1–96.
Pauliuk, S., Heeren, N., Berrill, P., Fishman, T., Nistad, A., Tu, Q., Wolfram, P., Hertwich, E. G. (2021). Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nature Communications, 12: 5097.
Yan, D., Hong, T., Dong, B., Mahdavi, A., D’Oca, S., Gaetani, I., Feng, X. (2017). IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Bulidings, 156: 258–270.
Yang, X., Nielsen, C. P., Song, S., McElroy, M. B. (2022). Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nature Energy, 7: 955–965.
Jiang, L., Fu, X. (2021). An ammonia–hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China. Engineering, 7: 1688–1691.
Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G. (2021). Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11: 384–393.
Thiel, G. P., Stark, A. K. (2021). To decarbonize industry, we must decarbonize heat. Joule, 5: 531–550.
Hu, S., Zhang, Y., Yang, Z., Yan, D., Jiang, Y. (2022). Challenges and opportunities for carbon neutrality in China’s building sector—Modelling and data. Building Simulation, 15: 1899–1921.
Mallapragada, D. S., Dvorkin, Y., Modestino, M. A., Esposito, D. V., Smith, W. A., Hodge, B. M., Harold, M. P., Donnelly, V. M., Nuz, A., Bloomquist, C., et al. (2023). Decarbonization of the chemical industry through electrification: Barriers and opportunities. Joule, 7: 23–41.
Daehn, K., Basuhi, R., Gregory, J., Berlinger, M., Somjit, V., Olivetti, E. A. (2022). Innovations to decarbonize materials industries. Nature Reviews Materials, 7: 275–294.
Liao, H., Chen, T., Tang, X., Wu, J. (2019). Fuel choices for cooking in China: Analysis based on multinomial logit model. Journal of Cleaner Production, 225: 104–111.
Zhang, X., Kai, L., Qiao, M., Fan, J. L. (2021). Orientation and prospect of CCUS development under carbon neutrality target. China Population Resource and Environment, 31: 29–33.
Fan, J. L., Li, Z., Huang, X., Li, K., Zhang, X., Lu, X., Wu, J., Hubacek, K., Shen, B. (2023). A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nature Communications, 14: 5972.
Fan, J. L., Fu, J., Zhang, X., Li, K., Zhou, W., Hubacek, K., Urpelainen, J., Shen, S., Chang, S., Guo, S., et al. (2023). Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nature Climate Change, 13: 807–815.
Fan, J. L., Li, Z., Ding, Z., Li, K., Zhang, X. (2023). Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models. Energy Economics, 126: 106972.
Zhang, M., Yang, X. N. (2021). Administrative framework barriers to energy storage development in China. Renewable and Sustainable Energy Reviews, 148: 111297.
Chen, H. S., Li, H., Xu, Y. J., Chen, M., Wang, L., Dai, X. J. Xu, D. H., Tang, X. S., Li, X. F., Hu, Y. S., et al. (2023). Research progress on energy storage technologies of China in 2022. Energy Storage Sci Technol, 12(5): 1516–1552. (In Chinese).
Wang, Z., Liu, M., Yan, J. (2021). Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics. Energy, 232: 121048.
Jafari, M., Botterud, A., Sakti, A. (2022). Decarbonizing power systems: A critical review of the role of energy storage. Renewable and Sustainable Energy Reviews, 158: 112077.
Gawusu, S., Zhang, X., Ahmed, A., Jamatutu, S. A., Miensah, E. D., Amadu, A. A., Osei, F. A. (2022). Renewable energy sources from the perspective of blockchain integration: From theory to application. Sustainable Energy Technologies and Assessments, 52: 102108.
Nieuwenhuijsen, M. J. (2020). Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment International, 140: 105661.
Wu, Z., Zhao, Z., Gan, W., Zhou, S., Dong, W., Wang, M. (2023). Achieving carbon neutrality through urban planning and design. International Journal of Environmental Research and Public Health, 20: 2420.
Mulvaney, D., Richards, R. M., Bazilian, M. D., Hensley, E., Clough, G., Sridhar, S. (2021). Progress towards a circular economy in materials to decarbonize electricity and mobility. Renewable and Sustainable Energy Reviews, 137: 110604.
Grubert, E., Zacarias, M. (2022). Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs. Renewable and Sustainable Energy Reviews, 159: 112208.
Reid, W. V., Ali, M. K., Field, C. B. (2020). The future of bioenergy. Global Change Biology, 26: 274–286.
Sarker, S. K., Haque, N., Bhuiyan, M., Bruckard, W., Pramanik, B. K. (2022). Recovery of strategically important critical minerals from mine tailings. Journal of Environmental Chemical Engineering, 10: 107622.
Bistline, J. E. T., Blanford, G. J. (2021). The role of the power sector in net-zero energy systems. Energy and Climate Change, 2: 100045.
Arent, D. J., Green, P., Abdullah, Z., Barnes, T., Bauer, S., Bernstein, A., Berry, D., Berry, J., Burrell, T., Carpenter, B., et al. (2022). Challenges and opportunities in decarbonizing the U.S. energy system. Renewable and Sustainable Energy Reviews, 169: 112939.
Seck, G. S., Hache, E., Sabathier, J., Guedes, F., Reigstad, G. A., Straus, J., Wolfgang, O., Ouassou, J. A., Askeland, M., Hjorth, I., et al. (2022). Hydrogen and the decarbonization of the energy system in Europe in 2050: A detailed model-based analysis. Renewable and Sustainable Energy Reviews, 167: 112779.
Bistline, J. E. T., Blanford, G. J. (2021). Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 12: 3732.
Green, M. A. (2019). Photovoltaic technology and visions for the future. Progress in Energy, 1: 013001.
Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X. (2023). Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications, 31: 651–663.
Zhang, Z., Hu, G., Mu, X., Kong, L. (2022). From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 322: 116087.
Probst, B., Touboul, S., Glachant, M., Dechezleprêtre, A. (2021). Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 6: 1077–1086.
Cantone, B., Evans, D., Reeson, A. (2023). The effect of carbon price on low carbon innovation. Scientific Reports, 13: 9525.
Zhang, H., Zhang, D., Guo, S., Zhang, X. (2024). Impact of benchmark tightening design under output-based ETS on China’s power sector. Energy, 288: 129832.