PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (2)

Tables (1)
Table 1
Review | Open Access | Online First

Energy sector decarbonization in China: macro challenges, supporting technologies and systems, and policy recommendations

Siyue Guo1Xian Zhang2Xiaodan Huang3,4Yuyan Weng1Weichen Zhao5Da Zhang1()Xiliang Zhang1()
Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100086, China
The Administrative Centre for China’s Agenda 21 (ACCA21), Ministry of Science and Technology (MOST), Beijing 100038, China
Tsinghua-CTG Joint Center for Climate Governance and Low-carbon Transformation, Tsinghua University, Beijing 100086, China
Institute of Industrial Energy Conservation and Environmental Protection, China Center for Information Industry Development, Beijing 100068, China
The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, UK
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Energy sector decarbonization is a key battleground in China’s march toward carbon neutrality, and understanding what it means and takes is crucial for its policy-making and sustainable implementation. Here we analyze the structural challenges and review the necessary supporting technologies and systems of energy sector decarbonization in China. It requires not only supporting technologies such as energy efficiency, zero-carbon energy, and carbon capture, utilization and storage, but also enabling systems such as the transmission, distribution and storage system, carbon governance mechanisms, and risk alleviation systems addressing risks of renewables waste and critical mineral supply. A technology roadmap highlighting techno-economics, environmental impact, technology innovation, and carbon market mechanisms is needed to facilitate energy sector decarbonization in China.

References

[1]
MEE. (2022). China’s policies and actions for addressing climate change (2022). https://english.mee.gov.cn/Resources/Reports/reports/202211/P020221110605466439270.pdf.
[2]
Xinhua net. (2021). Working guidance for carbon dioxide peaking and carbon neutrality in full and faithful implementation of the new development philosophy. https://en.ndrc.gov.cn/policies/202110/t20211024_1300725.html.
[3]
UN News. (2023). COP28 ends with call to ‘transition away’ from fossil fuels; UN’s Guterres says phaseout is inevitable. https://news.un.org/en/story/2023/12/1144742.
[4]
IPCC. (1990). FAR climate change: The IPCC response strategies. https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_III_full_report.pdf.
[5]
IPCC. (2022). Summary for policymakers. In: Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Shukla P. R., Skea, J., Slade, R., et al. Eds. Cambridge University Press. DOI: 10.1017/9781009157926.001.
[6]
IEA (2023), Net zero roadmap: A global pathway to keep the 1.5 ℃ goal in reach. Paris. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach.
[7]
The State Council Information Office of China. (2020). Energy in China’s new era. http://english.scio.gov.cn/whitepapers/2020-12/21/content_77035604.htm.
[8]
NEA, MOST. (2021). 14th Five-year energy technology innovation plan. https://www.gov.cn/zhengce/zhengceku/2022-04/03/content_5683361.htm. (In Chinese)
[9]
MOST. (2022). Implementation plan on technological support for carbon peak and carbon neutrality (2022–2030). https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2022/202208/W020220817583603511166.pdf. (In Chinese)
[10]

Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y. M., et al. (2018). Net-zero emissions energy systems. Science, 360: eaas9793.

[11]

Pye, S., Broad, O., Bataille, C., Brockway, P., Daly, H. E., Freeman, R., Gambhir, A., Geden, O., Rogan, F., Sanghvi, S., et al. (2021). Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 21: 222–231.

[12]

Azevedo, I., Bataille, C., Bistline, J., Clarke, L., Davis, S. (2021). Net-zero emissions energy systems: What we know and do not know. Energy and Climate Change, 2: 100049.

[13]

Jaxa-Rozen, M., Trutnevyte, E. (2021). Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change, 11: 266–273.

[14]

Meng, J., Way, R., Verdolini, E., Diaz Anadon, L. (2021). Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proceedings of the National Academy of Sciences of the United States of America, 118: e1917165118.

[15]
Jin, Z. Y. (2011). Global Technological Change From Hard Technology to Soft Technology. Bristol, UK: Intellect.
[16]

Lin, J., Khanna, N., Liu, X., Teng, F., Wang, X. (2019). China’s non-CO2 greenhouse gas emissions: Future trajectories and mitigation options and potential. Scientific Reports, 9: 16095.

[17]
NBS. (2022). China Energy Statistical Yearbook 2022. Beijing: China Statitics Press.
[18]

Zhang, D., Huang, X. D., Zhong, J. T., Guo, L. F., Guo, S. Y., Wang, D. Y., Miao, C. H., Zhang, X. L., Zhang, X. Y. (2023). A representative CO2 emissions pathway for China toward carbon neutrality under the Paris Agreement’s 2 ℃ target. Advances in Climate Change Research, 14: 941–951.

[19]
Zhang, X. L., Huang, X. D., Zhang, D., Geng, Y., Tian, L. X., Fan, Y., Chen, W. Y. (2022). Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality. J Manag World, 38: 35–51. (In Chinese)
[20]
Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F. Monforti-Ferrario, F., Olivier, J. G. J., Quadrelli, R., et al. CO2 emissions of all world countries—JRC/IEA/PBL 2022 Report. Luxembourg: Publications Office of the European Union; 2022. https://doi.org/10.2760/07904.
[21]
IEA. (2023). Greenhouse gas emissions from energy 2023. Paris.
[22]

Guan, Y., Shan, Y., Huang, Q., Chen, H., Wang, D., Hubacek, K. (2021). Assessment to China’s recent emission pattern shifts. Earth’s Future, 9: e2021EF002241.

[23]

He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Chang, S., Ou, X., Guo, S., Tian, Z., Gu, A., et al. (2020). Comprehensive report on China’s Long-Term Low-Carbon Development Strategies and Pathways. Chinese Journal of Population, Resources and Environment, 18: 263–295.

[24]
THUBERC. (2022). Annual Report on China Building Energy Efficiency 2023. Beijing: China Building Industry Press. (In Chinese)
[25]
China Electricity Council. (2022). Annual Development Report of China’s Power Industry 2022. Beijing: China Electricity Council. (In Chinese)
[26]

Duan, H., Zhou, S., Jiang, K., Bertram, C., Harmsen, M., Kriegler, E., van Vuuren, D. P., Wang, S., Fujimori, S., Tavoni, M., et al. (2021). Assessing China’s efforts to pursue the 1.5 ℃ warming limit. Science, 372: 378–385.

[27]

Zhang, S., Chen, W. (2022). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13: 87.

[28]

Pan, X., Wang, L., Chen, W., du Pont, Y. R., Clarke, L., Yang, L., Wang, H., Lu, X., He, J. (2022). Decarbonizing China’s energy system to support the Paris climate goals. Sci Bull, 67: 1406–1409.

[29]
IEA. (2021). An energy sector roadmap to carbon neutrality in China. Paris.
[30]
[31]

Liu, Z., Ciais, P., Deng, Z., Davis, S. J., Zheng, B., Wang, Y., Cui, D., Zhu, B., Dou, X., Ke, P., et al. (2020). Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data, 7: 392.

[32]

Hu, H. (1935). The distribution of China’s population. Acta Geogr Sin, 2: 33–73.

[33]

Ding, J., Cheng, C., Zhang, W., Tian, Y. (2021). The ideological origins and geographical demarcation significance of Hu Huanyong Line. Acta Geogr Sin, 76: 1317–1333.

[34]

Wang, C., Wang, Y., Tong, X., Ulgiati, S., Liang, S., Xu, M., Wei, W., Li, X., Jin, M., Mao, J. (2020). Mapping potentials and bridging regional gaps of renewable resources in China. Renewable and Sustainable Energy Reviews, 134: 110337.

[35]

Fan, J. L., Wei, S., Shen, S., Xu, M., Zhang, X. (2021). Geological storage potential of CO2 emissions for China’s coal-fired power plants: A city-level analysis. International Journal of Greenhouse Gas Control, 106: 103278.

[36]
China Electricity Council. (2023). Statistics material: monthly data 2023. https://cec.org.cn/menu/index.html?217.
[37]
IEA. (2021). World energy outlook 2021. Paris.
[38]
Zhang, Q., Tong, D. (2022). Carbon emissions and commitments of global energy infrastructure 2021. Beijing: Institute for Carbon Neutrality, Tsinghua University. (In Chinese)
[39]

Erickson, P., Kartha, S., Lazarus, M., Tempest, K. (2015). Assessing carbon lock-in. Environmental Research Letters, 10: 084023.

[40]

Van der Ploeg, F., Rezai, A. (2020). Stranded assets in the transition to a carbon-free economy. Annual Review of Resource Economics, 12: 281–298.

[41]

Zhang, W., Zhou, Y., Gong, Z., Kang, J., Zhao, C., Meng, Z., Zhang, J., Zhang, T., Yuan, J. (2023). Quantifying stranded assets of the coal-fired power in China under the Paris Agreement target. Climate Policy, 23: 11–24.

[42]

Pan, X., Ma, X., Zhang, Y., Shao, T., Peng, T., Li, X., Wang, L., Chen, W. (2023). Implications of carbon neutrality for power sector investments and stranded coal assets in China. Energy Economics, 121: 106682.

[43]
IEA. (2022). World energy outlook 2022. Paris.
[44]

He, J. K. (2021). Low carbon transformation of energy and conomy aiming for the peaking of carbon emission and carbon neutrality. J Environ Econ Manage, 6: 1–9.

[45]
IEA. (2016). Energy and air pollution. Paris.
[46]

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42: 153–168.

[47]

McCauley, D., Heffron, R. (2018). Just transition: Integrating climate, energy and environmental justice. Energy Policy, 119: 1–7.

[48]

Wu, S., Gao, J., Wei, B., Zhang, J., Guo, G., Wang, J., Deng, H., Liu, L., He, S., Xu, E. (2020). Building a resilient society to reduce natural disaster risks. Science Bulletin, 65: 1785–1787.

[49]
IEA. (2020). Energy technology perspectives 2020. Paris.
[50]
Bacher, R., Badajoz, C., Negri, A., de Nigris, M. ETIP SNET R&I roadmap 2020–2030. Brussels: ETIP SNET.
[51]

Cullen, J. M., Allwood, J. M. (2010). The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy, 38: 75–81.

[52]

Guo, S., Liu, Y., Zhao, W., Li, J., Hu, G., Kong, H., Gu, Y., Xu, B., Huang, X., Zheng, Y., et al. (2023). Technological development pathway for carbon neutrality in China. Science Bulletin, 68: 117–120.

[53]

Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., et al. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2: 100180.

[54]

Jenkins, J. D., Luke, M., Thernstrom, S. (2018). Getting to zero carbon emissions in the electric power sector. Joule, 2: 2498–2510.

[55]
IEA. (2023). Energy efficiency 2023. Paris: IEA.
[56]

Li, J., Herdem, M. S., Nathwani, J., Wen, J. Z. (2023). Methods and applications for artificial intelligence, big data, internet of things, and blockchain in smart energy management. Energy and AI, 11: 100208.

[57]

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., et al. (2023). Tackling climate change with machine learning. ACM Computing Surveys, 55: 1–96.

[58]

Pauliuk, S., Heeren, N., Berrill, P., Fishman, T., Nistad, A., Tu, Q., Wolfram, P., Hertwich, E. G. (2021). Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nature Communications, 12: 5097.

[59]
IEA. (2019). Material efficiency in clean energy transitions. Paris.
[60]

Yan, D., Hong, T., Dong, B., Mahdavi, A., D’Oca, S., Gaetani, I., Feng, X. (2017). IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Bulidings, 156: 258–270.

[61]

Yang, X., Nielsen, C. P., Song, S., McElroy, M. B. (2022). Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nature Energy, 7: 955–965.

[62]
CAPID. (2021). 3060 zero carbon biomass development potencial. Beijing. (In Chinese)
[63]

Jiang, L., Fu, X. (2021). An ammonia–hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China. Engineering, 7: 1688–1691.

[64]

Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G. (2021). Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11: 384–393.

[65]
China Hydrogen Alliance. (2021). White paper on china hydrogen and fuel cell industry 2020. Beijing. (In Chinese)
[66]
World Economic Forum, Accenture, China Hydrogen Alliance. (2023). Green hydrogen in China: A roadmap for progress. Geneva, Switzerland.
[67]

Thiel, G. P., Stark, A. K. (2021). To decarbonize industry, we must decarbonize heat. Joule, 5: 531–550.

[68]

Hu, S., Zhang, Y., Yang, Z., Yan, D., Jiang, Y. (2022). Challenges and opportunities for carbon neutrality in China’s building sector—Modelling and data. Building Simulation, 15: 1899–1921.

[69]

Mallapragada, D. S., Dvorkin, Y., Modestino, M. A., Esposito, D. V., Smith, W. A., Hodge, B. M., Harold, M. P., Donnelly, V. M., Nuz, A., Bloomquist, C., et al. (2023). Decarbonization of the chemical industry through electrification: Barriers and opportunities. Joule, 7: 23–41.

[70]

Daehn, K., Basuhi, R., Gregory, J., Berlinger, M., Somjit, V., Olivetti, E. A. (2022). Innovations to decarbonize materials industries. Nature Reviews Materials, 7: 275–294.

[71]

Liao, H., Chen, T., Tang, X., Wu, J. (2019). Fuel choices for cooking in China: Analysis based on multinomial logit model. Journal of Cleaner Production, 225: 104–111.

[72]
CEVCIPA. (2023). White paper on charging behavior of electric vehicle users in China in 2022. Beijing.
[73]

Zhang, X., Kai, L., Qiao, M., Fan, J. L. (2021). Orientation and prospect of CCUS development under carbon neutrality target. China Population Resource and Environment, 31: 29–33.

[74]

Fan, J. L., Li, Z., Huang, X., Li, K., Zhang, X., Lu, X., Wu, J., Hubacek, K., Shen, B. (2023). A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nature Communications, 14: 5972.

[75]
Coalition for Negative Emissions. (2021). The case for Negative Emissions: a call for immediate action.
[76]

Fan, J. L., Fu, J., Zhang, X., Li, K., Zhou, W., Hubacek, K., Urpelainen, J., Shen, S., Chang, S., Guo, S., et al. (2023). Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nature Climate Change, 13: 807–815.

[77]
DNV. (2024). The potential of onboard carbon capture in shipping. Hamburg, Germany.
[78]
GCCSI. (2023). Global status of CCS 2022. Melbourne.
[79]
ACCA21, GCCSI, THU. (2023). CCUS progress in China: A status report. Beijing.
[80]

Fan, J. L., Li, Z., Ding, Z., Li, K., Zhang, X. (2023). Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models. Energy Economics, 126: 106972.

[81]
RTIC. (2020). Energy storage grand challenge roadmap. Washington D.C.
[82]

Zhang, M., Yang, X. N. (2021). Administrative framework barriers to energy storage development in China. Renewable and Sustainable Energy Reviews, 148: 111297.

[83]

Chen, H. S., Li, H., Xu, Y. J., Chen, M., Wang, L., Dai, X. J. Xu, D. H., Tang, X. S., Li, X. F., Hu, Y. S., et al. (2023). Research progress on energy storage technologies of China in 2022. Energy Storage Sci Technol, 12(5): 1516–1552. (In Chinese).

[84]

Wang, Z., Liu, M., Yan, J. (2021). Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics. Energy, 232: 121048.

[85]
VGB. (2021). Flexibility toolbox—Measures for flexible operation of coal-fired power plants. Berlin.
[86]

Jafari, M., Botterud, A., Sakti, A. (2022). Decarbonizing power systems: A critical review of the role of energy storage. Renewable and Sustainable Energy Reviews, 158: 112077.

[87]
IEA. (2021).Secure energy transitions in the power sector. Paris.
[88]
Zhuo, Z., Zhang, N., Xie, X., Li, H., Kang, C. (2021). Key technologies and developing challenges of power system with high proportion of renewable energy. Autom Electr Power Syst, 45:171–191. (In Chinese)
[89]
Guo, M., Mei, N., Li, T., Yue, B. (2021). System design of ±500kV Zhangbei VSC-based DC grid project. Power Syst Technol, 45:4194–204. (In Chinese)
[90]

Gawusu, S., Zhang, X., Ahmed, A., Jamatutu, S. A., Miensah, E. D., Amadu, A. A., Osei, F. A. (2022). Renewable energy sources from the perspective of blockchain integration: From theory to application. Sustainable Energy Technologies and Assessments, 52: 102108.

[91]

Nieuwenhuijsen, M. J. (2020). Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment International, 140: 105661.

[92]

Wu, Z., Zhao, Z., Gan, W., Zhou, S., Dong, W., Wang, M. (2023). Achieving carbon neutrality through urban planning and design. International Journal of Environmental Research and Public Health, 20: 2420.

[93]

Mulvaney, D., Richards, R. M., Bazilian, M. D., Hensley, E., Clough, G., Sridhar, S. (2021). Progress towards a circular economy in materials to decarbonize electricity and mobility. Renewable and Sustainable Energy Reviews, 137: 110604.

[94]
IEA. (2021). The role of critical minerals in clean energy transitions. Paris.
[95]

Grubert, E., Zacarias, M. (2022). Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs. Renewable and Sustainable Energy Reviews, 159: 112208.

[96]

Reid, W. V., Ali, M. K., Field, C. B. (2020). The future of bioenergy. Global Change Biology, 26: 274–286.

[97]

Sarker, S. K., Haque, N., Bhuiyan, M., Bruckard, W., Pramanik, B. K. (2022). Recovery of strategically important critical minerals from mine tailings. Journal of Environmental Chemical Engineering, 10: 107622.

[98]
Qiu, M., Chen, J. (2023). CATL invests another 23.8 billion yuan in battery recycling in Guangdong to ease “lithium anxiety”. https://new.qq.com/rain/a/20230129A0693L00. (In Chinese)
[99]

Bistline, J. E. T., Blanford, G. J. (2021). The role of the power sector in net-zero energy systems. Energy and Climate Change, 2: 100045.

[100]

Arent, D. J., Green, P., Abdullah, Z., Barnes, T., Bauer, S., Bernstein, A., Berry, D., Berry, J., Burrell, T., Carpenter, B., et al. (2022). Challenges and opportunities in decarbonizing the U.S. energy system. Renewable and Sustainable Energy Reviews, 169: 112939.

[101]

Seck, G. S., Hache, E., Sabathier, J., Guedes, F., Reigstad, G. A., Straus, J., Wolfgang, O., Ouassou, J. A., Askeland, M., Hjorth, I., et al. (2022). Hydrogen and the decarbonization of the energy system in Europe in 2050: A detailed model-based analysis. Renewable and Sustainable Energy Reviews, 167: 112779.

[102]

Bistline, J. E. T., Blanford, G. J. (2021). Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 12: 3732.

[103]

Green, M. A. (2019). Photovoltaic technology and visions for the future. Progress in Energy, 1: 013001.

[104]

Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X. (2023). Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications, 31: 651–663.

[105]
IEA. (2021). Patents and the energy transition. Paris.
[106]
Bashmakov, I. A., Nilsson, L. J., Acquaye, A., Bataille, C., Cullen, J. M., de la Rue du Can, S., Fischedick, M., Geng, Y., Tanaka, K. (2022). Industry. In: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Shukla P. R., Skea, J., Slade, R., Al Khourdajie, A., et al., Eds. Cambridge University Press. DOI: 10.1017/9781009157926.013.
[107]
European Commission. (2019). The European green deal.
[108]
White House. (2022). Inflation reduction act 2022. Washington D.C.
[109]
Editorial Committee of Fourth National Assessment Report on Climate Change of China. (2022). Summary for policymakers. In: Fourth National Assessment Report on Climate Change of China. Beijing: China Science Publishing & Media Ltd.
[110]

Zhang, Z., Hu, G., Mu, X., Kong, L. (2022). From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 322: 116087.

[111]
Li, L., Lu, X. (2023). Policy effects of China’s carbon market: Review and prospect. China Popul Resour Environ, 33: 156–64. (In Chinese)
[112]

Probst, B., Touboul, S., Glachant, M., Dechezleprêtre, A. (2021). Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 6: 1077–1086.

[113]

Cantone, B., Evans, D., Reeson, A. (2023). The effect of carbon price on low carbon innovation. Scientific Reports, 13: 9525.

[114]
Zhang, X. L., Zhang, D., Yu, R. X. (2021). Theory and practice of China’s national carbon emissions trading system. Manage World, 8: 80–94. (In Chinese)
[115]

Zhang, H., Zhang, D., Guo, S., Zhang, X. (2024). Impact of benchmark tightening design under output-based ETS on China’s power sector. Energy, 288: 129832.

[116]
MEE. (2024). Progress report of China’s national carbon market (2024). Beijing.
Technology Review for Carbon Neutrality
Cite this article:
Guo S, Zhang X, Huang X, et al. Energy sector decarbonization in China: macro challenges, supporting technologies and systems, and policy recommendations. Technology Review for Carbon Neutrality, 2024, https://doi.org/10.26599/TRCN.2025.9550003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return