The strategic deployment of electrical energy storage technologies enables a new power system with higher renewable energy integration and further empowers the whole society’s transition to a green, sustainable, and technologically advanced energy economy. Here we review the shifting landscape of electrical energy storage technologies in China, commenting on the technological advantages, breakthroughs, bottlenecks, and future directions of technologies from ultrashort-term options like flywheels to ultralong-term solutions like hydrogen storage. Levelized cost of those technologies are key in predicting their future deployment, while diversified local energy storage solutions are necessary to accommodate local energy resources and consumption. To promote deployment of electrical energy storage technologies, multi-sectoral policies encompassing innovation policy, regulatory policy, financial incentives, workforce training, as well as locally tailored planning are needed.
Lei, Y. D., Wang Z. L., Wang, D. Y., Zhang, X. Y., Che, H. Z., Yue, X., Tian, C. G., Zhong, J. T., Guo, L. F., Li, L., et al. (2023). Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy. Nature Climate Change, 13: 693–700.
Zhang, S., Chen, W. Y. (2022). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communication, 13: 87.
Olabi, A. G., Ali Abdelkareem, M. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158: 112111.
Ali, S. M. H., Lenzen, M., Sack, F., Yousefzadeh, M. (2020). Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids. Applied Energy, 268: 114960.
Cao, Y. P., Zhou, B., Chung, C. Y., Shuai, Z. K., Hua, Z. H., Sun, Y. X. (2023). Dynamic modelling and mutual coordination of electricity and watershed networks for spatio-temporal operational flexibility enhancement under rainy climates. IEEE Transactions on Smart Grid, 14: 3450–3464.
Li, X., Li, W. M., Zhang, R. F., Jiang, T., Chen, H. H., Li, G. Q. (2020). Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings. Applied Energy, 258: 114021.
Sun, B., Zhang, Y., Fan, B., Xie, P. (2024). An optimal sequential investment decision model for generation-side energy storage projects in China considering policy uncertainty. Journal of Energy Storage, 83: 110748.
Pompei, L., Nardecchia, F., Miliozzi, A. (2023). Current, projected performance and costs of thermal energy storage. Processes, 11: 729.
Zhao, P., Gou, F. F., Xu, W. P., Wang, J. F., Dai, Y. P. (2022). Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes. Renewable Energy, 181: 71–90.
Pulazza, G., Zhang, N., Kang, C. Q., Nucci, C. A. (2021). Transmission planning with battery-based energy storage transportation for power systems with high penetration of renewable energy. IEEE Transactions on Power Systems, 36(6): 4928–4940.
Moradi-Sepahvand, M., Amraee, T. (2021). Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation. Applied Energy, 298: 117137.
Ding, Y. X., Xu, Q. S., Huang, Y. (2020). Optimal sizing of user-side energy storage considering demand management and scheduling cycle. Electric Power Systems Research, 184: 106284.
Liu, Y. S., Liu, Q. Q., Guan, H. M., Li, X., Bi, D. Q., Guo, Y. J., Sun, H. X. (2022). Optimization strategy of configuration and scheduling for user-side energy storage. Electronics, 11: 120.
Xia, Y. X., Xu Q. S., Zhao, J., Yuan, X. D. (2020). Two-stage robust optimisation of user-side cloud energy storage configuration considering load fluctuation and energy storage loss. IET Generation, Transmission & Distribution, 14: 3278–3287.
Luo, X., Wang J. H., Dooner, M., Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137: 511–536.
Wang, Y. G., Song, Y. F., Xia, Y. Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21): 5925–5950.
Liu, J., Bao, Z., Cui, Y., Dufek, E. J., Goodenough, J., Khalifah, P., Li, Q., Liaw, B., Liu, P., Manthiram, A., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4: 180–186.
Wang, J., Lu, K., Ma, L., Wang, J., Dooner, M., Miao, S., Li, J., Wang, D. (2017). Overview of compressed air energy storage and technology development. Energies, 10: 991.
Park, M., Ryu, J., Wang, W., Cho, J. (2017). Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials, 2: 16080.
Alnaqbi, S., Alasad, S., Aljaghoub, H., Alami, A., Abdelkareem, M., Olabi, A. (2022). Applicability of hydropower generation and pumped hydro energy storage in the middle east and North Africa. Energies, 15: 2412.
Choudhury, S. (2021). Flywheel energy storage systems: A critical review on technologies, applications, and future prospects. International Transations on Electrical Energy Systems, 31: e13024.
Li, X., Palazzolo, A. (2022). A review of flywheel energy storage systems: State of the art and opportunities. Journal of Energy Storage, 46: 103576.
Sun, M. X., Xu, Y. L. (2024). Research on the axial stability of large-capacity magnetic levitation flywheel driven by axial-flux permanent magnet machine based on Runge-Kutta method. IEEE Access, 12: 22315–22330.
Olabi, A. G., Wilberforce, T., Ali Abdelkareem, M., Ramadan, M. (2021). Critical review of flywheel energy storage system. Energies, 14: 2159.
Kundu, M., Mondal, D., Mondal, I., Baral, A., Halder, P., Biswas, S., Paul, B. K., Bose, N., Basu, R., Das, S. (2023). A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor. Journal of Energy Chemistry, 87: 192–206.
Iqbal, M. Z., Aziz, U. (2022). Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices. Journal of Energy Storage, 46: 103823.
Saikia, B. K., Benoy, S. M., Bora, M., Tamuly, J., Pandey, M., Bhattacharya, D. (2020). A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 282: 118796.
Yue, X. Y., Yao Y. X., Zhang, J., Yang, S. Y., Li, Z. H., Yan, C., Zhang, Q. (2022). Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries. Advanced Materials, 34(15): 2110337.
Shen, X., Zhang, X. Q., Ding, F., Huang, J. Q., Xu, R., Chen, X., Yan, C., Su, F. Y., Chen, C. M., Liu, X. J., et al. (2021). Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Material Advances, 2021: 1205324.
Chang, X., Yang, Z., Liu, Y., Chen, J., Wu, M., Li, L., Chou, S., Qiao, Y. (2024). The guarantee of large-scale energy storage: Non-flammable organic liquid electrolytes for high-safety sodium ion batteries. Energy Storage Materials, 69: 103407.
Esparcia, E. A. Jr, Castro, M. T., Odulio, C. M. F., Ocon, J. D. (2022). A stochastic techno-economic comparison of generation-integrated long duration flywheel, lithium-ion battery, and lead-acid battery energy storage technologies for isolated microgrid applications. Journal of Energy Storage, 52: 104681.
Li, X. N., Geng, G. C., Jiang, Q. Y., Ma, J. C., Ni, Q. L., Guo, K. J. (2022). Case study of power allocation strategy for a grid-side lead-carbon battery energy storage system. IET Renewable Power Generation, 16: 435–446.
Wang, Z. D., Tuo, X. P. Zhou, J. Q., Xiao, G. (2022). Performance study of large capacity industrial lead-carbon battery for energy storage. Journal of Energy Storage, 55: 105398.
Zhang, C. Y., Lu, X., Han, X., Yu, J., Zhang, C. Q., Huang, C., Balcells, L., Manjon, A. G., Biendicho, J. J., Li, J. S., et al. (2023). Identifying the role of the cationic geometric configuration in spinel catalysts for polysulfide conversion in sodium-sulfur batteries. Journal of the American Chemical Society, 145: 18992–19004.
Chen, X. R., Qin, Y. D., Shen, X., Yan, C., Diao, R., Zhu, H. Z., Tang, C., Ouyang, M. G., Zhang, Q. (2023). Lithium-ion batteries participating in frequency regulation through low-destructive bidirectional pulsed current operation. Advanced Energy Materials, 13: 2300500.
Cheng, X. B., Liu, H., Yuan, H., Peng, H. J., Tang, C., Huang, J. Q., Zhang, Q. (2021). A perspective on sustainable energy materials for lithium batteries. SusMat, 1: 38.
He, J. R., Bhargav, A., Su, L. S., Charalambous, H., Manthiram, A. (2023). Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries. Nature Communications, 14: 6568.
Qin, Y. D., Chen, X. R., Tomaszewska, A., Chen, H., Wei, Y. F., Zhu, H. Z., Li, Y. L., Cui, Z. H., Huang, J. H. Du, J. Y., et al. (2022). Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Reports Physical Science, 3: 100708.
Huang, Y. L., Cao, B. W., Geng, Z., Li, H. (2024). Advanced electrolytes for rechargeable lithium metal batteries with high safety and cycling stability. Accounts of Materials Research, 5: 184–193.
Li, A., Qian, C., Mao, G., Liu, Z., Li, Z., Zhang, Y., Yin, L., Shen, L., Li, H. (2024). One-step multifunctional surface modification strategy enhancing cycling performance of Li-rich cathodes for lithium-ion batteries. Journal of Power Sources, 599: 234245.
Javed M. S., Zhong, D., Ma, T., Song, A. T., Ahmed, S. (2020). Hybrid pumped hydro and battery storage for renewable energy based power supply system. Applied Energy, 257: 114026.
Yang, Y. S., Li, Z. M., Mandapaka, P. V., Lo, E. Y. M. (2023). Risk-averse restoration of coupled power and water systems with small pumped-hydro storage and stochastic rooftop renewables. Applied Energy, 339: 120953.
Li, J. L., Zhao, Z. W., Xu, D., Li, P. Q., Liu, Y., Mahmud, M. A., Chen, D. Y. (2023). The potential assessment of pump hydro energy storage to reduce renewable curtailment and CO2 emissions in Northwest China. Renewable Energy, 212: 82–96.
Mahfoud, R. J., Alkayem, N. F., Zhang, Y. Q., Zheng, Y., Sun, Y. H., Alhelou, H. H. (2023). Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives. Renewable and Sustainable Energy Reviews, 178: 113267.
Khalafian, F., Iliaee, N., Diakina, E., Parsa, P., Alhaider, M. M., Masali, M. H., Pirouzi, S., Zhu, M. (2024). Capabilities of compressed air energy storage in the economic design of renewable off-grid system to supply electricity and heat costumers and smart charging-based electric vehicles. Journal of Energy Storage, 78: 109888.
Karaca, A. E., Dincer, I., Nitefor, M. (2023). A new renewable energy system integrated with compressed air energy storage and multistage desalination. Energy, 268: 126723.
Guo D. Z., Zhou X. Z., Zhang, X. J. Xu, Y. J., Yin, Z., Liu, C. C., Fu, W. X., Chen, H. S. (2024). Operation characteristics study of fiber reinforced composite air storage vessel for compressed air energy storage system. Journal of Energy Storage, 86: 111148.
Liu, C., Su, X., Yin, Z., Sheng, Y., Zhou, X., Xu, Y., Wang, X., Chen, H. (2024). Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage. Applied Energy, 364: 123129.
Pan, X., Zhu, Y., Wang, X., Xiong, J., Guan, Y., Chen, H. (2024). Numerical investigation on the influence of axial thermal expansion in axial turbine for compressed air energy storage system. Journal of Energy Storage, 84: 110595.
Tong, Z. M., Cheng, Z. W. Tong, S. G. (2021). A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization. Renewable and Sustainable Energy Reviews, 135: 110178.
Carrington M. E., Sokolowski, K., Jonsson, E., Zhao, E. W., Graf, A. M., Temprano, I., McCune, J. A., Grey, C. P., Scherman, O. A. (2023). Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature, 623: 949–955.
Lv, X. L., Sullivan, P. T., Li, W. J., Fu, H. C., Jacobs, R., Chen, C. J., Morgan, D., Jin, S., Feng, D. W. (2023). Modular dimerization of organic radicals for stable and dense flow battery catholyte. Nature Energy, 8: 1109–1118.
Hunt, J. D., Zakeri, B., Jurasz, J., Tong, W. X., Dabek, P. B., Brandao, R., Patro, E. R., Durin, B., Leal, W., Wada, Y., et al. (2023). Underground gravity energy storage: A solution for long-term energy storage. Energies, 16: 825.
Tong, W. X., Lu, Z. A., Chen, W. J., Han, M. X., Zhao, G. L., Wang, X. F., Deng, Z. F. (2022). Solid gravity energy storage: A review. Journal of Energy Storage, 53: 105226.
Tong, W. X., Lu Z. A., Hunt, J. D., Zhao, H. S., Han, M. X., Zhao, G. L. (2023). The structure and control strategies of hybrid solid gravity energy storage system. Journal of Energy Storage, 74: 109283.
Lawag, R. A., Ali, H. M. (2022). Phase change materials for thermal management and energy storage: A review. Journal of Energy Storage, 55: 105602.
Sadeghi, G. (2022). Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials, 46: 192.
Sathishkumar, A., Cheralathan, M. (2023). Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study. Energy, 263: 125700.
Tang, H., Yu, J., Geng, Y., Liu, X., Lin, B. (2023). Optimization of operational strategy for ice thermal energy storage in a district cooling system based on model predictive control. Journal of Energy Storage, 62: 106872.
Krevor, S., de Coninck, H., Gasda, S. E., Ghaleigh, N. S., de Gooyert, V., Hajibeygi, H., Juanes, R., Neufeld, J., Roberts J. J., Swennenhuis, F. (2023). Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nature Reviews Earth & Environment, 4: 102.
Thomas, J. M., Edwards, P. P., Dobson, P. J., Owen, G. P. (2020). Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry, 51: 405–415.
Schmidt, O., Melchior,S., Hawkes, A., Staffell, I. (2019). Projecting the future levelized cost of electricity storage technologies. Joule, 3: 81–100.
Li, Y. L., Wei, Y. F., Zhu, F. Q., Du, J. Y., Zhao, Z. M., Ouyang, M. G. (2023). The path enabling storage of renewable energy toward carbon neutralization in China. eTransportation, 16: 100226.
Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195: 703–724.
Li, M. H., Hamawandy, N. M., Wahid, F., Rjoub, H., Bao, Z. K. (2021). Renewable energy resources investment and green finance: Evidence from China. Resources Policy, 74: 102402.
Ren, G. R. Wan, J., Liu, J. F., Yu, D. R. (2019). Yu Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy, 177: 262–275.
Yin X. B., Yang R. G., Tan, G., Fan, S. H. (2020). Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science, 370: 786–791.