AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A 12-bit 250-MS/s Charge-Domain Pipelined Analog-to-Digital Converter with Feed-Forward Common-Mode Charge Control

Zongguang YuXiaobo SuZhenhai Chen( )Jiaxuan ZouJinghe WeiHong ZhangYan Xue
Department of Microelectronics, Xidian University, Xi’an 710071, China.
No. 58 Research Institute, China Electronic Technology Group Corporation, Wuxi 214035, China.
School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
Show Author Information

Abstract

A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CD) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18- μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0–1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm 2.

References

[1]
Q. X. Zhao, L. Xu, Y. M. Mao, S. P. Leng, G. Y. Min, J. Hu, and N. Najjari, Service-oriented wireless multimedia multicasting with partial frequency reuse, Tsinghua Science and Technology, vol. 21, no. 6, pp. 598-609, 2016.
[2]
A. M. A. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brusilius, P. R. Derounian, et. al., A 14-b 1 GS/s RF sampling pipelined ADC with background calibration, IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2857-2867, 2014.
[3]
M. El-Chammas, X. P. Li, S. Kimura, J. Coulon, J. Hu, D. Smith, P. Landman, and M. Weaver, A 90 dB SFDR 14-b 500 MS/s BiCMOS switched-current pipelined ADC, presented at the 2015 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2015.
[4]
W. T. Li, F. L. Li, C. Y. Yang, S.J. Li, and Z. H. Wang, An 85 mW 14-bit 150 MS/s pipelined ADC with a merged first and second MDAC, China Communications, vol. 12, no. 5, pp. 14-22, 2015.
[5]
S. Yi, S. B. Liu, and Z. M. Zhu. A 10-b 50-MS/s two-stage pipelined SAR ADC in 180 nm CMOS, Journal of Semiconductors, vol. 37, no. 6, p. 065001-6, 2013.
[6]
V. Tripathi and B. Murmann, A 160 MS/s, 11.1 mW, single- channel pipelined SAR ADC with 68.3 dB SNDR, presented at the 2014 IEEE Proceedings of the Custom Integrated Circuits Conference, San Jose, CA, USA, 2014.
[7]
L. Brooks and H. S. Lee, A 12-b 50-MS/s fully differential zero-crossing-based ADC without CMFB, presented at the 2009 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2009.
[8]
J. Hu, N. Dolev, and B. Murmann, A 9.4-bit 50-MS/s, 1.44 mW pipelined ADC using dynamic source follower residue amplification, IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1057-1066, 2009.
[9]
H. H. Boo, D. S. Boning, and H. S. Lee, A 12-b 250 MS/s pipelined ADC with virtual ground reference buffers, IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2912-2921, 2015.
[10]
M. Anthony, E. Kohler, J. Kurtze, L. Kushner, and G. Sollner, A process-scalable low-power charge-domain 13-bit pipeline ADC, presented at the 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2008.
[11]
Z. H. Chen, Z. G. Yu, S. R. Huang, H. Zhang, and H. C. Ji, A PVT Insensitive boosted charge transfer for high speed charge-domain pipelined ADCs, IEICE Electronics Express, vol. 9, no. 6, pp. 565-571, 2012.
[12]
Z. H. Chen, S. R. Huang, H. Zhang, and H. C. Ji, A 27-mW 10-bit 125-MSPS charge-domain pipelined ADC with PVT insensitive boosted charge transfer, Journal of Semiconductors, vol. 34, no. 3, p. 035009-9, 2013.
[13]
Z. H. Chen, H. W. Qian, S. R. Huang, H. Zhang, and Z. G. Yu, Low power time-interleaved 10-bit 250MS/s charge domain pipelined ADC for IF sampling, Journal of Semiconductors, vol. 34, no. 6, p. 065005-8, 2013.
[14]
S. R. Huang, H. Zhang, Z. H. Chen, S. Zhu, Z. G. Yu, H. W. Qian, and Y. Hao, A 10-bit 250MS/s charge-domain pipelined ADC with replica controlled PVT insensitive BCT circuit, Journal of Semiconductors, vol. 36, no. 5, p. 055012-7, 2015.
[15]
B. Peng; G. Z. Huang, H. Li, P. Y. Wan, and P. F. Lin, A 48-mW, 12-bit, 150-MS/s pipelined ADC with digital calibration in 65nm CMOS, presented at the 2011 IEEE Proceedings of the Custom Integrated Circuits Conference, San Jose, CA, USA, 2011.
[16]
X. Wang, C. Y. Yang, X. X. Zhao, C. Wu, Z. H. Wang, and B. Wu, A 12-bit, 270MS/s pipelined ADC with SHA-eliminating front end, presented at the 2012 IEEE International Symposium on Circuits and Systems, Seoul, South Korea, 2012.
[17]
S. K. Shin, J. C. Rudell, D. C. Daly, C. Z. Munoz, D.Y. Chang, K. Gulati, H.S. Lee, and M.Z. Straayer, A 12-bit, 200MS/s zero-crossing based pipelined ADC with early sub-ADC decision and output residue background calibration, IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1366-1382, 2014.
[18]
A. Nazari, E. Mikkola, B. Jalali, and H. Barnaby, A 12-b, 650-MSps time-interleaved pipeline analog to digital converter with 1.5 GHz analog bandwidth for digital beam-forming systems, Analog Integrated Circuits & Signal Processing, vol. 89, no. 8, pp. 213-222, 2016.
Tsinghua Science and Technology
Pages 87-94
Cite this article:
Yu Z, Su X, Chen Z, et al. A 12-bit 250-MS/s Charge-Domain Pipelined Analog-to-Digital Converter with Feed-Forward Common-Mode Charge Control. Tsinghua Science and Technology, 2018, 23(1): 87-94. https://doi.org/10.26599/TST.2018.9010030

606

Views

32

Downloads

5

Crossref

N/A

Web of Science

9

Scopus

3

CSCD

Altmetrics

Received: 29 December 2016
Accepted: 24 May 2017
Published: 15 February 2018
© The authors 2018
Return