AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (720.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Prediction of Cancer-Associated piRNA–mRNA and piRNA–lncRNA Interactions by Integrated Analysis of Expression and Sequence Data

Yajun LiuJunying Zhang( )Aimin LiZhaowen LiuZhongzhen HeXiguo YuanShouheng Tuo
Xi’an University of Technology, Xi’an 710048, China.
School of Computer Science and Technology, Xidian University, Xi’an 710071, China.
Show Author Information

Abstract

piwi-interacting RNAs (piRNAs) are valuable biomarkers, but functional studies are still very limited. Recent research shows that piRNA-mediated cleavage acts on Transposable Elements (TEs), messenger RNAs (mRNAs), and long non-coding RNAs (lncRNAs). This study aimed to predict cancer-associated piRNA-mRNA and piRNA-lncRNA interactions as well as piRNA regulatory functions. Four cancer types (BRCA, HNSC, KIRC, and LUAD) were investigated. Interactions were identified by integrated analysis of the expression and sequence data. For the expression analysis, only piRNA–mRNA and piRNA–lncRNA pairs with expression profiles that were significantly inversely correlated were retained to reduce false-positive rates during the prediction. For the sequence analysis, miRanda was used for the target prediction. We identified 198 piRNA–mRNA and 10 piRNA–lncRNA pairs. Unlike mRNA and lncRNA expressions, the piRNA expression was relatively consistent across the cancer types. Furthermore, the identified piRNAs were consistent with previously published cancer biomarkers, such as piRNA-36741, piR-21032, and piRNA-57125. More importantly, predicted piRNA functions were determined by constructing an interaction network, and piRNA targets were placed in gene ontology categories related to the cancer hallmarks “activating invasion and metastasis” and “sustained angiogenesis”.

References

[1]
Seto A. G., Kington R. E., and Lau N. C., The coming of age for piwi proteins, Molecular Cell, vol.  26,  no.  5,  pp. 603609, 2007.10.1016/j.molcel.2007.05.021
[2]
Aravin A., Gaidatzis D., Pfeffer S., Lagosquintana M., Landgraf P., Iovino N., Morris P., Brownstein M. J., Kuramochimiyagawa S.,  Nakano T., et al., A novel class of small rnas bind to mili protein in mouse testes, Nature, vol. 442, no. 7099, pp. 203207, 2006.10.1038/nature04916
[3]
Weick E. M. and Miska E. A., piRNAs: From biogenesis to function, Development, vol. 141, no. 18, pp. 34583471, 2014.10.1242/dev.094037
[4]
Thomson T. and Lin H., The biogenesis and function of piwi proteins and piRNAs: Progress and prospect, Annual Review of Cell & Developmental Biology, vol. 2009, no. 1, pp. 355376, 2009.10.1146/annurev.cellbio.24.110707.175327
[5]
Houwing S., Kamminga L. M., Berezikov E., Cronembold D., Girard A., Van D. E. H., Filippov D. V., Blaser H., Raz E., and Moens C. B., A role for piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish, Cell, vol. 129, no. 1, pp. 6982, 2007.10.1016/j.cell.2007.03.026
[6]
Yan Z., Hu H. Y., Jiang X., Maierhofer V., Neb E., He L., Hu Y., Hu H., Li N., Chen W., et al., Widespread expression of piRNA-like molecules in somatic tissues, Nucleic Acids Research, vol. 39, no. 15, pp. 65966607, 2011.10.1093/nar/gkr298
[7]
Martinez V. D., Vucic E. A., Thu K. L., Hubaux R., Enfield K. S., Pikor L. A., Beckersantos D. D., Brown C. J., Lam S., and Lam W. L., Unique somatic and malignant expression patterns implicate piwi-interacting RNAs in cancer-type specific biology, Scientific Reports, vol. 5, p. 10423, 2015.10.1038/srep10423
[8]
Suzuki R., Honda S., and Kirino Y., Piwi expression and function in cancer, Frontiers in Genetics, vol. 3, p. 204, 2012.10.3389/fgene.2012.00204
[9]
Cheng J., Guo J. M., Xiao B. X., Miao Y., Jiang Z., Zhou H., and Li Q. N., piRNA, the new non-coding rna, is aberrantly expressed in human cancer cells, Clinica Chimica Acta; International Journal of Clinical Chemistry, vol. 412, nos. 17&18, p. 1621, 2011.
[10]
Cheng J., Deng H., Xiao B., Zhou H., Zhou F., Shen Z., and Guo J., pir-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells, Cancer Letters, vol. 315, no. 1, pp. 1217, 2012.10.1016/j.canlet.2011.10.004
[11]
Cui L., Lou Y., Zhang X., Zhou H., Deng H., Song H., Yu X., Xiao B., Wang W., and Guo J., Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers, Clinical Biochemistry, vol. 44, no. 13, p. 1050, 2011.10.1016/j.clinbiochem.2011.06.004
[12]
Watanabe T., Cheng E. C., Zhong M., and Lin H., Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline, Genome Research, vol. 25, no. 3, p. 368, 2014.10.1101/gr.180802.114
[13]
Gou L. T., Dai P., Yang J. H., Wang E. D., and Liu M. F., Pachytene piRNAs instruct massive mRNA elimination during latespermiogenesis, Cell Research, vol. 24, no. 6, pp. 680700, 2014.10.1038/cr.2014.41
[14]
Yuan J., Zhang P., Cui Y., Wang J., Skogerbø G., Huang D. W., Chen R., and He S., Computational identification of pirna targets on mouse mrnas, Bioinformatics, vol. 32, no. 8, p. 1170, 2016.10.1093/bioinformatics/btv729
[16]
Flicek P., Aken B. L., Ballester B., Beal K., Bragin E., Brent S., Chen Y., Clapham P., Coates G., Fairley S., et al., Ensembl’s 10th year, Nucleic Acids Research, vol. 38, no. 1, pp. D557D562, 2010.10.1093/nar/gkp972
[17]
Haider S., Ballester B., Smedley D., Zhang J., Rice P., and Kasprzyk A., Biomart central portal—Unified access to biological data, Nucleic Acids Research, vol. 37, no. Web Server issue, p. W23, 2009.10.1093/nar/gkp265
[18]
Karolchik D., Hinrichs A. S., Furey T. S., Roskin K. M., Sugnet C. W., Haussler D., and Kent W. J., The ucsc table browser data retrieval tool, Nucleic Acids Research, vol. 32, no. Database issue, pp. 493496, 2004.10.1093/nar/gkh103
[19]
Zhang P., Si X., Skogerbø G., Wang J., Cui D., Li Y., Sun X., Liu L., Sun B., and Chen R., pirbase: A web resource assisting piRNA functional study, Database, vol. 2014, p. bau110, 2014.
[20]
Pruitt K. D., Tatusova T., and Maglott D. R., Ncbi reference sequence (refseq): A curated non-redundant sequence database of genomes, transcripts and proteins, Nucleic Acids Research, vol. 33, no. Database issue, pp. D501D504, 2005.10.1093/nar/gki025
[21]
Jurka J., Repbase update: A database and an electronic journal of repetitive elements. Trends in Genetics, vol. 16, no. 9, p. 418, 2000.10.1016/S0168-9525(00)02093-X
[22]
Enright A. J., John B., Gaul U., Tuschl T., Sander C., and Marks D. S., Microrna targets in drosophila, Genome Biology, vol. 5, no. 1, p. R1, 2003.10.1186/gb-2003-5-1-r1
[23]
Bino J., Enright A. J., Alexei A., Thomas T., Chris S., and Marks D. S., Human microRNA targets, Plos Biology, vol. 2, no. 11, p. e363, 2004.10.1371/journal.pbio.0020363
[24]
Anders S. and Huber W., Differential expression analysis for sequence count data, Genome Biology, vol. 11, no. 10, p. R106, 2010.10.1186/gb-2010-11-10-r106
[25]
Huang D. W., Sherman B. T., and Lempicki R. A., Systematic and integrative analysis of large gene lists using david bioinformatics resources, Nature Protocol, vol. 4, no. 1, pp. 4457, 2009.10.1038/nprot.2008.211
[26]
Huang D., Sherman B. T., and Lempicki R. A., Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol. 37, no. 1, pp. 113, 2009.10.1093/nar/gkn923
[27]
Eisen M. B., Spellman P. T., Brown P. O., and Botstein D., Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14 86314 868, 1998.10.1073/pnas.95.25.14863
[28]
Reich M., Liefeld T., Gould J., Lerner J., Tamayo P., and Mesirov J. P., Genepattern 2.0, Nature Genetics, vol. 38, no. 5, pp. 500501, 2006.10.1038/ng0506-500
[29]
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., and Ideker T., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Research, vol. 13, no. 11, pp. 24982504, 2003.10.1101/gr.1239303
[30]
Kwon C. H., Tak H., Rho M., Chang H. R., Kim Y. H., Kim K. T., Balch C., Lee E. K., and Nam S., Detection of piwi and piRNAs in the mitochondria of mammalian cancer cells, Biochemical & Biophysical Research Communications, vol. 446, no. 1, pp. 218223, 2014.10.1016/j.bbrc.2014.02.112
[31]
Yang X., Cheng Y., Lu Q., Wei J., Yang H., and Gu M., Detection of stably expressed pirnas in human blood, International Journal of Clinical & Experimental Medicine, vol. 8, no. 8, pp. 13 35313 358, 2015.
[32]
Zhang B., Kirov S., and Snoddy J., Webgestalt: An integrated system for exploring gene sets in various biological contexts, Nucleic Acids Research, vol. 33, no. Web Server issue, p. W741, 2005.10.1093/nar/gki475
[33]
Wang J., Duncan D., Shi Z., and Zhang B., Web-based gene set analysis toolkit (webgestalt): Update 2013, Nucleic Acids Research, vol. 41, no. Web Server issue, p. W77, 2013.10.1093/nar/gkt439
Tsinghua Science and Technology
Pages 115-125
Cite this article:
Liu Y, Zhang J, Li A, et al. Prediction of Cancer-Associated piRNA–mRNA and piRNA–lncRNA Interactions by Integrated Analysis of Expression and Sequence Data. Tsinghua Science and Technology, 2018, 23(2): 115-125. https://doi.org/10.26599/TST.2018.9010056

620

Views

31

Downloads

10

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 November 2016
Revised: 07 March 2017
Accepted: 10 March 2017
Published: 02 April 2018
© The author(s) 2018
Return