Abstract
With the accelerated aging of the global population and escalating labor costs, more service robots are needed to help people perform complex tasks. As such, human-robot interaction is a particularly important research topic. To effectively transfer human behavior skills to a robot, in this study, we conveyed skill-learning functions via our proposed wearable device. The robotic teleoperation system utilizes interactive demonstration via the wearable device by directly controlling the speed of the motors. We present a rotation-invariant dynamical-movement-primitive method for learning interaction skills. We also conducted robotic teleoperation demonstrations and designed imitation learning experiments. The experimental human-robot interaction results confirm the effectiveness of the proposed method.