AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Fusion Analysis of Resting-State Networks and Its Application to Alzheimer’s Disease

Department of Computer Science and Technology, Tongji University, Shanghai 201800, China.
Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China.
Show Author Information

Abstract

Functional networks are extracted from resting-state functional magnetic resonance imaging data to explore the biomarkers for distinguishing brain disorders in disease diagnosis. Previous works have primarily focused on using a single Resting-State Network (RSN) with various techniques. Here, we apply fusion analysis of RSNs to capturing biomarkers that can combine the complementary information among the RSNs. Experiments are carried out on three groups of subjects, i.e., Cognition Normal (CN), Early Mild Cognitive Impairment (EMCI), and Alzheimer’s Disease (AD) groups, which correspond to the three progressing stages of AD; each group contains 18 subjects. First, we apply group Independent Component Analysis (ICA) to extracting the Default Mode Network (DMN) and Dorsal Attention Network (DAN) for each subject group. Then, by obtaining the common DMN and DAN as templates for each group, we employ the individual ICA to extract the DMN and DAN for each subject. Finally, we fuse the DMNs and DANs to explore the biomarkers. The results show that (1) the templates generated by group ICA can extract the RSN for each subject by individual ICA effectively; (2) the RSNs combined with the fusion analysis can obtain more informative biomarkers than without fusion analysis; (3) the most different regions of DMN and DAN are found between CN and EMCI and between EMCI and AD, which show differences. For the DMN, the difference in the medial prefrontal cortex between the EMCI and AD is smaller than that between CN and EMCI, whereas that in the posterior cingulate between EMCI and AD is larger. As for the DAN, the difference in the intraparietal sulcus is smaller than that between CN and EMCI; (4) extracting DMN and DAN for each subject via the back reconstruction of group ICA is invalid.

References

[1]
N. K. Logothetis, What we can do and what we cannot do with fMRI, Nature, vol. 453, no. 7197, pp. 869-878, 2008.
[2]
M. R., Coleman J. M., Rodd M. H., Davis I. S., Johnsrude D. K., Menon J. D. Pickard, and A. M. Owen, Do vegetative patients retain aspects of language comprehension? Evidence from fMRI, Brain, vol. 130, no. 10, pp. 2494-2507, 2007.
[3]
J. L., Lv B. B., Lin Q. Y., Li W., Zhang Y., Zhao X., Jiang L., Guo J. W., Han X. T., Hu C., Guo et al., Task fMRI data analysis based on supervised stochastic coordinate coding, Medical Image Analysis, vol. 38, pp. 1-16, 2017.
[4]
K. J. Friston, Modalities, modes, and models in functional neuroimaging, Science, vol. 326, no. 5951, pp. 399-403, 2009.
[5]
R. C., Craddock P. E., Holtzheimer X. P. P. Hu, and H. S. Mayberg, Disease state prediction from resting state functional connectivity, Magn. Reson. Med., vol. 62, no. 6, pp. 1619-1628, 2009.
[6]
M. P. van den, Heuvel P. Hulshoff, and E. Hilleke, Exploring the brain network: A review on resting-state fMRI functional connectivity, Eur. Neuropsychopharmacol., vol. 20, no. 8, pp. 519-534, 2010.
[7]
C., Dansereau Y., Benhajali C., Risterucci E. M., Pich P., Orban D. Arnold, and P. Bellec, Statistical power and prediction accuracy in multisite resting-state fMRI connectivity, NeuroImage, vol. 149, pp. 220-232, 2017.
[8]
M. D., Greicius G., Srivastava A. L., Reiss V. Menon, and M. E. Raichle, Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI, Proc. Natl. Acad. Sci. USA, vol. 101, no. 13, pp. 4637-4642, 2004.
[9]
H. Y., Zhang S. J., Wang J., Xing B., Liu Z. L., Ma M., Yang Z. J. Zhang, and G. J. Teng, Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease, Behav. Brain Res., vol. 197, no. 1, pp. 103-108, 2009.
[10]
S. O., Orimaye J. S. M., Wong K. J., Golden C. P. Wong, and I. N. Soyiri, Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers, BMC Bioinformatics, vol. 18, no. 1, p. 34, 2017.
[11]
M. Filippi and F. Agosta, Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques, J. Alzhemiers Dis., vol. 24, no. 3, pp. 455-474, 2011.
[12]
S. F., Eskildsen C., Pierrick G.-L., Daniel V., Fonov J. C. Pruessner, and D. L. Collins, Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, NeuroImage, vol. 65, pp. 511-521, 2013.
[13]
K. J., Friston C. D., Frith P. F. Liddle, and R. S. Frackowiak, Functional connectivity: The principal-component analysis of large (PET) data sets, J. Cereb. Blood Flow Metab., vol. 13, no. 1, p. 5, 1993.
[14]
M. E., Raichle A. M., MacLeod A. Z., Snyder W. J., Powers D. A. Gusnard, and G. L. Shulman, A default mode of brain function, Proc. Natl. Acad. Sci. USA, vol. 98, no. 2, pp. 676-682, 2001.
[15]
G. B. Chand and M. Dhamala, Interactions among the brain default-mode, salience, and central-executive networks during perceptual decision-making of moving dots, Brain Connectivity, vol. 6, no. 3, pp. 249-254, 2016.
[16]
S. A., Schmidt K., Akrofi J. R. Carpenter-Thompson, and F. T. Husain, Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss, PLoS One, vol. 8, no. 10, p. e76488, 2013.
[17]
D. H. Weissman and J. Prado, Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention, NeuroImage, vol. 61, no. 4, pp. 798-804, 2012.
[18]
R. N., Spreng J., Sepulcre G. R., Turner W. D. Stevens, and D. L. Schacter, Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain, J. Cognitive Neuroscience, vol. 25, no. 1, pp. 74-86, 2013.
[19]
S. Whitfield-Gabrieli and A. Nieto-Castanon, Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks, Brain Connect., vol. 2, no. 3, pp. 125-141, 2012.
[20]
H. C., Shou A., Eloyan M. B., Nebel A. F., Mejia J. J., Pekar S. H., Mostofsky B.S., Caffo M. A. Lindquist, and C. M. Crainiceanu, Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI, NeuroImage, vol. 102, pp. 938-944, 2014.
[21]
D., Cordes V., Haughton J. D., Carew K. Arfanakis, and K. Maravilla, Hierarchical clustering to measure connectivity in fMRI resting-state data, Magn. Reson. Imaging, vol. 20, no. 4, pp. 305-317, 2002.
[22]
V. D., Calhoun T., Adali G. D. Pearlson, and J. J. Pekar, A method for making group inferences from functional MRI data using independent component analysis, Hum. Brain Mapp., vol. 14, no. 3, pp. 140-151, 2001.
[23]
O., Demirci M. C., Stevens N. C., Andreasen A., Michael J., Liu T., White G. D., Pearlson V. P. Clark, and V. D. Calhoun, Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls, NeuroImage, vol. 46, no. 2, pp. 419-431, 2009.
[24]
V. D., Calhoun J. Liu, and T. Adali, A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data, NeuroImage, vol. 45, no. 1, pp. S163-S172, 2009.
[25]
P. A., Rodriguez M., Anderson V. D. Calhoun, and T. Adali, General nonunitary constrained ICA and its application to complex-valued fMRI data, IEEE Trans. Biomed. Engineering, vol. 62, no. 3, pp. 922-929, 2015.
[26]
Y., Liu M. F., Li Y., Wu J. Jia, and L. Q. Zhang, Separation and recognition of electroencephalogram patterns using temporal independent component analysis, Int. J. Pattern Recogn., vol. 29, no. 1, p. 15, 2015.
[27]
X., Gao T. Zhang, and J. H. Xiong, Comparison between spatial and temporal independent component analysis for blind source separation in fMRI data, in Proc. the 4th International Conference on Biomedical Engineering and Informatics, Shanghai, China, 2011.
[28]
C., Lai J. Liu, and Q. Wu, Classification of sMRI data in Alzheimer’s disease based on UMPCA and Laplacian Score, in Proc. the 9th International Conference on Information, Communications & Signal Processing, Beijing, China, 2013.
[29]
H. S. Chiang and S. C. Pao, An EEG-based fuzzy probability model for early diagnosis of Alzheimer’s disease, J. Medical Systems, vol. 40, no. 5, pp. 1-9, 2016.
[30]
E., Westman J. S. Muehlboeck, and A. Simmons, Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion, NeuroImage, vol. 62, no. 1, pp. 229-238, 2012.
[31]
F. F., Sherif N. Zayed, and M. Fakhr, Discovering Alzheimer genetic biomarkers using Bayesian networks, Adv. Bioinformatics, vol. 2015, p. 639367, 2015.
[32]
I., Garali M., Adel S. Bourennane, and E. Guedj, Brain region ranking for 18FDG-PET computer-aided diagnosis of Alzheimer’s disease, Biomed. Signal Proc. and Control, vol. 27, pp. 15-23, 2016.
[33]
W., Koch S., Teipel S., Mueller J., Benninghoff M., Wagner A., Bokde H., Hampel U., Coates M. Reiser, and T. Meindl, Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease, Neurobiol. Aging, vol. 33, no. 3, pp. 466-478, 2012.
[34]
C., Malherbe A., Messe E., Bardinet M., Pelegrini-Issac V., Perlbarg G., Marrelec Y., Worbe J., Yelnik S. Lehericy, and H. Benali, Combining spatial independent component analysis with regression to identify the subcortical components of resting-state fMRI functional networks, Brain Connectivity, vol. 4, no. 3, pp. 181-192, 2014.
[35]
M. F., Ahmad J. K., Murphy D., Vatansever E. A. Stamatakis, and S. J. Godsill, Tracking changes in functional connectivity of brain networks from resting-state fMRI using particle filters, in Proc. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 2015.
[36]
R., Labounek D., Janecek R., Marecek M., Lamos T., Slavicek M., Mikl J., Bastinec P., Bednarik D. A., Bridwell M., Brazdil et al., Generalized EEG-fMRI spectral and spatiospectral heuristic models, in Proc. the 13th International Symposium on Biomedical Imaging, Prague, Czech Republic, 2016.
[37]
M., Ramezani P., Abolmaesumi K., Marble H. Trang, and I. Johnsrude, Fusion analysis of functional MRI data for classification of individuals based on patterns of activation, Brain Imag. Behav., vol. 9, no. 2, pp. 149-161, 2015.
[38]
M., Ramezani K., Marble H., Trang I. S. Johnsrude, and P. Abolmaesumi, Joint sparse representation of brain activity patterns in multi-task fMRI data, IEEE Trans. Med. Imaging, vol. 34, no. 1, pp. 2-12, 2015.
[39]
V. D., Calhoun T., Adali K. A., Kiehl R., Astur J. J. Pekar, and G. D. Pearlson, A method for multitask fMRI data fusion applied to schizophrenia, Hum. Brain Mapp., vol. 27, no. 7, pp. 598-610, 2006.
[40]
A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Computation, vol. 7, no. 6, pp. 1129-1159, 1995.
[41]
Y. O., Li T. Adali, and V. D. Calhoun, Estimating the number of independent components for functional magnetic resonance imaging data, Hum. Brain Mapp., vol. 28, no. 11, pp. 1251-1266, 2007.
[42]
J. Himberg and A. Hyvarinen, ICASSO: Software for investigating the reliability of ICA estimates by clustering and visualization, in Proc. 2003 IEEE XIII Workshop on Neural Networks for Signal Processing, Toulouse, France, 2003.
[43]
V. D., Calhoun P. K., Maciejewski G. D. Pearlson, and K. A. Kiehl, Temporal lobe and default hemodynamic brain modes discriminate between schizophrenia and bipolar disorder, Hum. Brain Mapp., vol. 29, no. 11, pp. 1265-1275, 2008.
[44]
F. De, Martino G., Valente N., Staeren J., Ashburner R. Goebel, and E. Formisano, Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns, NeuroImage, vol. 43, no. 1, pp. 44-58, 2008.
[45]
E., Challis P., Hurley L., Serra M., Bozzali S. Oliver, and M. Cercignani, Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI, NeuroImage, vol. 112, pp. 232-243, 2015.
Tsinghua Science and Technology
Pages 456-467
Cite this article:
Pei S, Guan J, Zhou S. Fusion Analysis of Resting-State Networks and Its Application to Alzheimer’s Disease. Tsinghua Science and Technology, 2019, 24(4): 456-467. https://doi.org/10.26599/TST.2018.9010099

516

Views

9

Downloads

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 April 2018
Accepted: 03 May 2018
Published: 07 March 2019
© The author(s) 2019
Return