Abstract
The control of a high Degree of Freedom (DoF) robot to grasp a target in three-dimensional space using Brain-Computer Interface (BCI) remains a very difficult problem to solve. Design of synchronous BCI requires the user perform the brain activity task all the time according to the predefined paradigm; such a process is boring and fatiguing. Furthermore, the strategy of switching between robotic auto-control and BCI control is not very reliable because the accuracy of Motor Imagery (MI) pattern recognition rarely reaches 100