AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (668.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Optimization of Quantum Computing Models Inspired by D-Wave Quantum Annealing

Baonan WangFeng HuChao Wang( )
Key laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
State Key Laboratory of Cryptology, Beijing 100878, China.
Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518000, China.
Show Author Information

Abstract

With the slow progress of universal quantum computers, studies on the feasibility of optimization by a dedicated and quantum-annealing-based annealer are important. The quantum principle is expected to utilize the quantum tunneling effects to find the optimal solutions for the exponential-level problems while classical annealing may be affected by the initializations. This study constructs a new Quantum-Inspired Annealing (QIA) framework to explore the potentials of quantum annealing for solving Ising model with comparisons to the classical one. Through various configurations of the 1D Ising model, the new framework can achieve ground state, corresponding to the optimum of classical problems, with higher probability up to 28% versus classical counterpart (22% in case). This condition not only reveals the potential of quantum annealing for solving the Ising-like Hamiltonian, but also contributes to an improved understanding and use of the quantum annealer for various applications in the future.

References

[1]
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman and Company, 1979.
[2]
R. Martoňák, G. E. Santoro, and E. Tosatti, Quantum annealing of the traveling salesman problem, Physical Review E, vol. 70, no. 5, p. 057701, 2004.
[3]
G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Berlin Heidelberg, Germany: Springer-Verlag, 1999.
[4]
P. Brucker, On the complexity of clustering problems, Optimization and Operations Research. Berlin Heidelberg, Germany: Springer, 1978.
[5]
M. Troyer and U. J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Physical Review Letters, vol. 94, no. 17, p. 170201, 2005.
[6]
A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Quantum annealing: A new method for minimizing multidimensional functions, Chemical Physics Letters, vol. 219, nos. 5&6, pp. 343-348, 1994.
[7]
G. E. Santoro and E. Tosatti, Optimization using quantum mechanics: Quantum annealing through adiabatic evolution, Journal of Physics A: Mathematical and General, vol. 39, no. 36, p. R393, 2006.
[8]
S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer, Optimised simulated annealing for Ising spin glasses, Computer Physics Communications, vol. 192, pp. 265-271, 2015.
[9]
J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum annealing of a disordered magnet, Science, vol. 284, no. 5415, pp. 779-781, 1999.
[10]
T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews of Modern Physics, vol. 90, no. 1, p. 015002, 2018.
[11]
A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, et al., Observation of topological phenomena in a programmable lattice of 1800 qubits, Nature, vol. 560, no. 7719, p. 456, 2018.
[12]
F. Neukart, D. Von Dollen, G. Compostella, C. Seidel, S. Yarkoni, and B. Parney, Traffic flow optimization using a quantum annealer, Frontiers in ICT, vol. 4, p. 29, 2017.
[13]
R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, et al., Phase transitions in a programmable quantum spin glass simulator, Science, vol. 361, no. 6398, pp. 162-165, 2018.
[14]
C. Wang and H. G. Zhang, The impact of Canada’s commercial quantum computer on cryptography, (Chinese), China Information Security, vol. 2, pp. 31-32, 2012.
[15]
W. C. Peng, B. N. Wang, F. Hu, Y. J. Wang, X. J. Fang, X. Y. Chen, and C. Wang, Factoring larger integers with fewer qubits via quantum annealing with optimized parameters, Sci. China-Phys. Mech. Astron, vol. 62, no. 6, p. 060311, 2019.
[16]
F. Hu, L. Lamata, M. Sanz, X. Chen, X. Y. Chen, C. Wang, and E. Solano, Quantum computing cryptography: Unveiling cryptographic boolean functions with quantum annealing, arXiv preprint arXiv: 1806.08706, 2018.
[17]
R. Martoňák, G. E. Santoro, and E. Tosatti, Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model, Physical Review B, vol. 66, no. 9, p. 094203, 2002.
[18]
L. Stella and G. E. Santoro, Quantum annealing of an Ising spinglass by Green’s function Monte Carlo, Physical Review E, vol. 75, no. 3, p. 036703, 2007.
[19]
M. Sarjala, V. Petäjä, and M. Alava, Optimization in random field Ising models by quantum annealing, Journal of Statistical Mechanics: Theory and Experiment, vol. 2006, no. 1, p. P01008, 2006.
[20]
S. Shinomoto and Y. Kabashima, Finite time scaling of energy in simulated annealing, Journal of Physics A: Mathematical and General, vol. 24, no. 3, p. L141, 1991.
[21]
C. De Simone, M. Diehl, M. Juenger, P. Mutzel, and G. Reinelt, Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm, Journal of Statistical Physics, vol. 80, nos. 1&2, pp. 487-496, 1995.
[22]
G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science, vol. 355, no. 6325, pp. 602-606, 2017.
[23]
Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient cluster algorithm for spin glasses in any space dimension, Physical Review Letters, vol. 115, no. 7, p. 077201, 2015.
[24]
S. M. Krause, P. Böttcher, and S. Bornholdt, Mean-field-like behavior of the generalized voter-model-class kinetic Ising model, Physical Review E, vol. 85, no. 3, p. 031126, 2012.
[25]
M. W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. J. Berkley, E. M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, et al., A scalable control system for a superconducting adiabatic quantum optimization processor, Superconductor Science and Technology, vol. 23, no. 6, p. 065004, 2010.
[26]
D. A. Huse and D. S. Fisher, Residual energies after slow cooling of disordered systems, Physical Review Letters, vol. 57, no. 17, p. 2203, 1986.
[27]
S. Suzuki and M. Okada, Simulated quantum annealing by the real-time evolution, in Quantum Annealing and Other Optimization Methods. Berlin, Heidelberg, Germany: Springer, pp. 207-238, 2005.
[28]
G. E. Santoro, R Martoňák, E. Tosatti, and R. Car, Theory of quantum annealing of an Ising spin glass, Science, vol. 295, no. 5564, pp. 2427-2430, 2002.
[29]
M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., Quantum annealing with manufactured spins, Nature, vol. 473, no. 7346, pp. 194-198, 2011.
[30]
C. Wang, Y. J. Wang, and F. Hu, Shaping the future of commercial quantum computer and the challenge for information security, (Chinese), Chinese Journal Network and Information Security, vol. 2, no. 3, pp. 17-27, 2016.
[31]
G. Mazzola, V. N. Smelyanskiy, and M. Troyer, Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing, Physical Review B, vol. 96, no. 13, p. 134305, 2017.
[32]
S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang, S. Boixo, H. Neven, and M. Troyer, Understanding quantum tunneling through quantum Monte Carlo simulations, Physical Review Letters, vol. 117, no. 18, p. 180402, 2016.
[33]
T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model, Physical Review E, vol. 58, no. 5, p. 5355, 1998.
[34]
I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, and D. A. Lidar, Probing for quantum speedup in spin-glass problems with planted solutions, Physical Review A, vol. 92, no. 4, p. 042325, 2015.
[35]
H. G. Katzgraber, F. Hamze, and R. S. Andrist, Glassy chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines, Physical Review X, vol. 4, no. 2, p. 021008, 2014.
[36]
T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science, vol. 345, no. 6195, pp. 420-424, 2014.
[37]
S. Suzuki, H. Nishimori, and M. Suzuki, Quantum annealing of the random-field Ising model by transverse ferromagnetic interactions, Physical Review E, vol. 75, no. 5, p. 051112, 2007.
[38]
T. Albash and D. A. Lidar, Demonstration of a scaling advantage for a quantum annealer over simulated annealing, Physical Review X, vol. 8, no. 3, p. 031016, 2018.
Tsinghua Science and Technology
Pages 508-515
Cite this article:
Wang B, Hu F, Wang C. Optimization of Quantum Computing Models Inspired by D-Wave Quantum Annealing. Tsinghua Science and Technology, 2020, 25(4): 508-515. https://doi.org/10.26599/TST.2019.9010030

856

Views

73

Downloads

7

Crossref

N/A

Web of Science

9

Scopus

2

CSCD

Altmetrics

Received: 27 June 2019
Revised: 27 June 2019
Accepted: 17 July 2019
Published: 13 January 2020
© The author(s) 2020

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return