Abstract
Virtualization is the most important technology in the unified resource layer of cloud computing systems. Static placement and dynamic management are two types of Virtual Machine (VM) management methods. VM dynamic management is based on the structure of the initial VM placement, and this initial structure will affect the efficiency of VM dynamic management. When a VM fails, cloud applications deployed on the faulty VM will crash if fault tolerance is not considered. In this study, a model of initial VM fault-tolerant placement for star topological data centers of cloud systems is built on the basis of multiple factors, including the service-level agreement violation rate, resource remaining rate, power consumption rate, failure rate, and fault tolerance cost. Then, a heuristic ant colony algorithm is proposed to solve the model. The service-providing VMs are placed by the ant colony algorithms, and the redundant VMs are placed by the conventional heuristic algorithms. The experimental results obtained from the simulation, real cluster, and fault injection experiments show that the proposed method can achieve better VM fault-tolerant placement solution than that of the traditional first fit or best fit descending method.