AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Effect of Chloride Ion Concentrations on Luminescence Peak Blue Shift of Light-Emitting Diode Using Anti-Solvent Extraction of Quasi-Two-Dimensional Perovskite

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Sensor, MOE Key Laboratory for Modern Measurement and Control Technology, Beijing Information Science and Technology University, Beijing 100101, China.
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Show Author Information

Abstract

In recent years, Perovskite Light-Emitting Diodes (PeLEDs) have received considerable attention in academia. However, with the development of PeLEDs, commercial applications of full-color PeLED technology are largely limited by the progress of blue-emitting devices, due to the uncontrollably accurate composition, unstable properties, and low luminance. In this article, we add Cesium chloride (CsCl) to the quasi-two-dimensional (quasi-2D) perovskite precursor solution and achieve the relatively blue shifts of PeLED emission peak by introducing chloride ions for photoluminescence (PL) and electroluminescence (EL). We also found that the introduction of chlorine ions can make quasi-2D perovskite films thinner with smoother surface of 0.408 nm. It is interesting that the EL peaks and intensities of PeLED are adjustable under different driving voltages in high concentration chlorine-added perovskite devices, and different processes of photo-excited, photo-quenched, and photo-excited occur sequentially with the increasing driving voltage. Our work provides a path for demonstrating full-color screens in the future.

References

[1]
F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttneter, T. Leijtens, S. D. Stranks, H. J. Snaith, et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, The Journal of Physical Chemistry Letters, vol. 5, no. 8, pp. 1421-1426, 2014.
[2]
Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, et al., Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[3]
J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, et al., Interfacial control toward efficient and low-voltage perovskite light-emitting diodes, Advanced Materials, vol. 27, no. 14, pp. 2311-2316, 2015.
[4]
N. Wang, J. Si, Y. Jin, J. Wang, and W. Huang, Solution-processed organic-inorganic hybrid perovskites: A class of dream materials beyond photovoltaic applications, Acta Chimica Sinica, vol. 73, no. 3, pp. 171-178, 2015.
[5]
T. H. Liu, K. Chen, Q. Hu, J. Wu, D. Y. Luo, S. Jia, R. Zhua, and Q. H. Gong, Fast-growing procedure for perovskite in planar heterojunction perovskite solar cells, Chinese Chemical Letters, vol. 26, no. 12, pp. 1518-1521, 2015.
[6]
K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent, Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[7]
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures, Nature, vol. 562, no. 7726, pp. 249-253, 2018.
[8]
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, and J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nature Photonics, vol. 12, no. 11, pp. 681-687, 2018.
[9]
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes, Nature Photonics, vol. 12, no. 12, pp. 783-789, 2018..
[10]
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. Hu, et al., Rational molecular passivation for high-performance perovskite light-emitting diodes, Nature Photonics, vol. 13, no. 6, pp. 418-424, 2019.
[11]
L. Cheng, Y. Cao, R. Ge, Y. Q. Wei, N. N. Wang, J. P. Wang, and W. Huang, Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites, Chinese Chemical Letters, vol. 28, no. 1, pp. 29-31, 2017.
[12]
Z. Li, Z. Chen, Y. Yang, Q. Xue, H. L. Yip, and Y. Cao, Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5, Nature Communications, vol. 10, no. 1, p. 1027, 2019.
[13]
Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures, Nature Photonics, vol. 13, no. 11, pp. 760-764, 2019.
[14]
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nature Photonics, vol. 10, no. 11, pp. 699-704, 2016.
[15]
Y. Sun, L. Zhang, N. Wang, S. Zhang, Y. Cao, Y. Miao, M. Xu, H. Zhang, H. Li, C. Yi, et al., The formation of perovskite multiple quantum well structures for high performance light-emitting diodes, Npj Flexible Electronics, vol. 2, no. 1, pp. 687-692, 2018.
[16]
W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang, Y. Cao, Y. Miao, M. Xu, Q. Guo, D. Di, et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes, Nature Communications, vol. 9, no. 1, p. 608, 2018.
[17]
J. Xing, Y. Zhao, M. Askerka, L. N. Quan, X. Gong, W. Zhao, J. Zhao, H. Tan, G. Long, L. Gao, et al., Color-stable highly luminescent sky-blue perovskite light-emitting diodes, Nature Communications, vol. 9, no. 1, p. 3541, 2018.
[18]
P. Chen, Y. Meng, M. Ahmadi, Q. Peng, C. Gao, L. Xu, M. Shao, Z. Xiong, and B. Hu, Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes, Nano Energy, vol. 50, pp. 615-622, 2018.
[19]
T. L. Leung, H. W. Tam, F. Liu, J. Lin, A. M. C. Ng, W. K. Chan, W. Chen, Z. He, I. Lončarić, L. Grisanti, et al., Mixed spacer cation stabilization of blue-emitting n=2 ruddlesden-popper organic-inorganic halide perovskite films, Advanced Optical Materials, vol. 8, no. 4, p. 679, 2019.
[20]
S. Yuan, Z. K. Wang, L. X. Xiao, C. F. Zhang, S. Y. Yang, B. B. Chen, H. T. Ge, Q. S. Tian, Y. Jin, and L. S. Liao, Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes, Advanced Materials, vol. 31, no. 44, p. e1904319, 2019.
[21]
Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng, J. Zhao, X. Xiao, P. Rudd, A. Moran, Y. Yan, et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement, Nature Communications, vol. 10, no. 1, p. 5633, 2019.
[22]
D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. Lai, et al., Synthesis of composition tunable and highly luminescent Cesium lead halide nanowires through anion-exchange reactions, Journal of the American Chemical Society, vol. 138, no. 23, pp. 7236-7239, 2016.
Tsinghua Science and Technology
Pages 496-504
Cite this article:
Liu B, Zou X, Chen D, et al. Effect of Chloride Ion Concentrations on Luminescence Peak Blue Shift of Light-Emitting Diode Using Anti-Solvent Extraction of Quasi-Two-Dimensional Perovskite. Tsinghua Science and Technology, 2021, 26(4): 496-504. https://doi.org/10.26599/TST.2020.9010013

732

Views

51

Downloads

5

Crossref

6

Web of Science

6

Scopus

2

CSCD

Altmetrics

Received: 31 March 2020
Accepted: 15 April 2020
Published: 04 January 2021
© The author(s) 2021

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return