State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
School of Science, Minzu University of China, Beijing 100081, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Sensor, MOE Key Laboratory for Modern Measurement and Control Technology, and Beijing Information Science and Technology University, Beijing 100101, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information
Hide Author Information
Abstract
Green Perovskite Light-Emitting Diodes (PeLEDs) have attracted wide attention for full spectrum displays. However, the inferior film morphology and luminescence property of quasi-two-dimensional (quasi-2D) perovskite layers limit the photoelectric property of the PeLEDs. In this paper, the effect of strontium (Sr) doped in quasi-2D perovskite layers is investigated to obtain a high-quality active layer. The morphologies and optical properties of Sr-doped quasi-2D perovskite films with different concentrations are studied. With the addition of strontium, more low-dimensional-layer perovskite phases ( and ) appear in quasi-2D perovskite films, providing efficient intraband carrier funneling pathway and facilitating radiative recombination. The photoluminescence (PL) peak intensity of optimized Sr-doped quasi-2D perovskite layers increases 50% compared with the non-strontium counterpart. Moreover, green PeLEDs based on a Sr-doped quasi-2D perovskite layer reach a maximum luminance () of 2943.77 cd/m, which is three times of the control device. The electroluminescence (EL) peaks of Maximum External Quantum Efficiency (MEQE) and of Sr-doped PeLEDs exhibite a slight shift, indicating the excellent stability and performance of Sr-doped devices. The optimized device can continuously operate for 360 s at MEQE driving voltage, resulting in a half-lifetime of 60 s, which is 3-fold greater than that of the control PeLEDs.
A.Kojima, K.Teshima, Y.Shirai, and T.Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, 2009.
M. Y.Ban, Y. T.Zou, J. P. H.Rivett, Y. G.Yang, T. H.Thomas, Y. S.Tan, T.Song, X. Y.Gao, D.Credgington, F.Deschler, et al., Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring, Nat. Commun., vol. 10, no. 1, p. 962, 2019.
W.Zou, R. Z.Li, S. T.Zhang, Y. L.Liu, N. N.Wang, Y.Cao, Y. F.Miao, M. M.Xu, Q.Guo, D. W.Di, et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes, Nat. Commun., vol. 9, no. 1, p. 608, 2018.
Y. Z.Jiang, C. C.Qin, M. H.Cui, T. W.He, K. K.Liu, Y. M.Huang, M. H.Luo, L.Zhang, H. Y.Xu, S. S.Li, et al., Spectra stable blue perovskite light-emitting diodes, Nat. Commun., vol. 10, no. 1, p. 1868, 2019.
Y.Hassan, J. H.Park, M. L.Crawford, A.Sadhanala, J.Lee, J. C.Sadighian, E.Mosconi, R.Shivanna, E.Radicchi, M.Jeong, et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs, Nature, vol. 591, no. 7848, pp. 72–77, 2021.
KongL. M., ZhangX. Y., LiY. G., WangH. R., JiangY. Z., WangS., YouM. Q., ZhangC. X., ZhangT., KershawS. V., et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices, Nat. Commun., vol. 12, no. 1, p. 1246, 2021.
K. B.Lin, J.Xing, L. N.Quan, F. P. G.de Arquer, X. W.Gong, J. X.Lu, L. Q.Xie, W. J.Zhao, D.Zhang, C. Z.Yan, et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent, Nature, vol. 562, no. 7726, pp. 245–248, 2018.
M. M.Liu, Q.Wan, H. M.Wang, F.Carulli, X. C.Sun, W. L.Zheng, L.Kong, Q.Zhang, C. Y.Zhang, Q. G.Zhang, et al., Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes, Nat. Photon., vol. 15, no. 5, pp. 379–385, 2021.
Y. Q.Liu, L. K.Ono, G. Q.Tong, H.Zhang, and Y. B.Qi, Two-dimensional dion-jacobson structure perovskites for efficient sky-blue light-emitting diodes, ACS Energy Lett., vol. 6, no. 3, pp. 908–914, 2021.
M.Karlsson, Z. Y.Yi, S.Reichert, X. Y.Luo, W. H.Lin, Z. Y.Zhang, C. X.Bao, R.Zhang, S.Bai, G. H. J.Zheng, et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes, Nat. Commun., vol. 12, no. 1, p. 361, 2021.
A. H.Liang, K.Wang, Y.Gao, B. P.Finkenauer, C. H.Zhu, L. R.Jin, L. B.Huang, and L. T.Dou, Highly efficient halide perovskite light-emitting diodes via molecular passivation, Angew. Chem. Int. Ed. Engl., vol. 60, no. 15, pp. 8337–8343, 2021.
L.Cheng, T.Jiang, Y.Cao, C.Yi, N. N.Wang, W.Huang, and J. P.Wang, Multiple-quantum-well perovskites for high-performance light-emitting diodes, Adv. Mater., vol. 32, no. 15, p. e1904163, 2020.
Y. T.Zou, H.Xu, S. Y.Li, T.Song, L.Kuai, S.Bai, F.Gao, and B. Q.Sun, Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films, ACS Photon., vol. 6, no. 7, pp. 1728–1735, 2019.
M. L.Xie, H.Liu, F. J.Chun, W.Deng, C.Luo, Z. H.Zhu, M.Yang, Y. M.Li, W.Li, W.Yan, et al., Aqueous phase exfoliating quasi-2D CsPbBr nanosheets with ultrahigh intrinsic water stability, Small, vol. 15, no. 34, p. 1901994, 2019.
LiuB. Y., ZouX. P., ChenD., LiuT. R., ZuoY. H., ZhengJ. , LiuZ., and ChengB. W., Effect of chloride Ion concentrations on luminescence peak blue shift of light- emitting diode using anti-solvent extraction of quasi-two-dimensional perovskite, Tsinghua Science and Technology, vol. 26, no. 4, pp. 496–504, 2021.10.26599/TST.2020.9010013
ZhangL. Q., YangX. L., JiangQ., WangP. Y., YinZ. G., ZhangX. W., TanH. R., YangY. M., WeiM. Y., SutherlandB. R., et al., Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes, Nat. Commun., vol. 8, no. 1, p. 15640, 2017.10.1038/ncomms15640
Q.Wang, X. M.Wang, Z.Yang, N. H.Zhou, Y. H.Deng, J. J.Zhao, X.Xiao, P.Rudd, A.Moran, Y. F.Yan, et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement, Nat. Commun., vol. 10, no. 1, p. 5633, 2019.
B. D.Zhao, Y. X.Lian, L. S.Cui, G.Divitini, G.Kusch, E.Ruggeri, F.Auras, W. W.Li, D. X.Yang, B. N.Zhu, et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface, Nat. Electron., vol. 3, no. 11, pp. 704–710, 2020.
Chen D, Liu T, Zuo Y, et al. Brightness and Lifetime Improved Light-Emitting Diodes from Sr-Doped Quasi-Two-Dimensional Perovskite Layers. Tsinghua Science and Technology, 2023, 28(1): 131-140. https://doi.org/10.26599/TST.2021.9010031
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
10.26599/TST.2021.9010031.F001
SEM images of the top view of different concentrations of Sr-doped perovskite films on the PEDOT:PSS substrates.
10.26599/TST.2021.9010031.F002
Absorbance and PL spectra of Sr-doped perovskite films. (a) Absorbance spectra and edge of the absorption spectrum are shown in the inset, (b) PL spectra and normalized spectra in the inset, and (c) logarithmic-scale plot of the PL spectrum in the linear scale.
10.26599/TST.2021.9010031.F003
PL images of different concentrations of Sr-doped perovskite films on the PEDOT:PSS substrates under 365 nm ultraviolet lamp excitation.
10.26599/TST.2021.9010031.F004
TRPL lifetime of different concentration Sr-doped perovskite films on the PEDOT:PSS substrates under 370 nm excitation.
10.26599/TST.2021.9010031.F005
UPS spectra of perovskite samples. The left and right plots in (a)–(e) are the cut-off edge region and valence band-edge region, respectively.
10.26599/TST.2021.9010031.F006
Device structure of the Sr-doped PeLEDs. (a) Schematic illustration with the Glass/ITO/PEDOT: PSS/Sr-doped perovskite/TPBi/LiF/Al and (b) SEM image of the cross-section of the PeLED device. Inset: photograph of a working PeLED.
10.26599/TST.2021.9010031.F007
EL emission spectra of Sr-doped PeLED at different applied voltages. The red and green lines are the curves at MEQE and working voltages, respectively.
10.26599/TST.2021.9010031.F008
Characterization of the PeLED performance. (a) Current-voltage, (b) luminance-voltage characteristics, and (c) EQE curves of the best PeLED.
10.26599/TST.2021.9010031.F009
(a) Corresponding CIE chromaticity coordinates of the EL emission of Sr(0.02) PeLEDs. (b) EQE as functions of the device operation time. The PeLEDs of 0, Sr(0.02), Sr(0.04), Sr(0.02), and Sr(0.04) are measured at a constant driving voltage of 6.5, 6.5, 6.5, 7, and 7 V, respectively.