State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information
Hide Author Information
Abstract
Heavy doped n-type -GaO (HD-GaO) was obtained by employing Si ion implantation technology on unintentionally doped -GaO single crystal substrates. To repair the GaO lattice damage and activate the Si after implantation, the implanted substrates were annealed at 950℃, 1000℃, and 1100℃, respectively. High-resolution X-ray diffraction and high-resolution transmission electron microscopy show that the ion-implanted layer has high lattice quality after high-temperature annealing at 1000℃. The minimum specific contact resistance is 9.2×10–5Ω·cm2, which is attributed to the titanium oxide that is formed at the Ti/GaO interface via rapid thermal annealing at 480℃. Based on these results, the lateral -GaO diodes were prepared, and the diodes exhibit high forward current density and low specific on-resistance.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
S. J.Pearton, J. C.Yang, P. H.Cary IV, F.Ren, J.Kim, M. J.Tadjer, and M. A.Mastro, A review of GaO materials, processing, and devices, , vol. 5, no. 1, p. 011301, 2018.
H. P.Zhang, L.Yuan, X. Y.Tang, J. C.Hu, J. W.Sun, Y. M.Zhang, Y. M.Zhang, and R. X.Jia, Progress of ultra-wide bandgap GaO semiconductor materials in power MOSFETs, , vol. 35, no. 5, pp. 5157–5179, 2020.
J.Millán, P.Godignon, X.Perpiñà, A.Pérez-Tomás, and J.Rebollo, A survey of wide bandgap power semiconductor devices, , vol. 29, no. 5, pp. 2155–2163, 2014.
W. X.Mu, Z. T.Jia, Y. R.Yin, Q. Q.Hu, Y.Li, B. Y.Wu, J.Zhang, and X. T.Tao, High quality crystal growth and anisotropic physical characterization of -GaO single crystals grown by EFG method, . , vol. 714, pp. 453–458, 2017.
H. F.Mohamed, C. T.Xia, Q. L.Sai, H. Y.Cui, M. Y.Pan, and H. J.Qi, Growth and fundamentals of bulk -GaO single crystals, . , vol. 40, no. 1, p. 011801, 2019.
Y. B.Wang, W. H.Xu, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, H.Huang, T.Suga, G. Q.Han, X.Ou, et al., -GaO MOSFETs on the Si substrate fabricated by the ion-cutting process, , vol. 63, no. 7, p. 277311, 2020.
Y. B.Wang, W. H.Xu, G. Q.Han, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, X. C.Zhang, H.Huang, T.Suga, et al., Temperature-dependent characteristics of Schottky barrier diode on heterogeneous -GaO(–201)-AlO-Si substrate,. , vol. 54, no. 3, p. 034004, 2021.
W. H.Xu, Y. B.Wang, T. G.You, X.Ou, G. Q.Han, H. D.Hu, S. B.Zhang, F. W.Mu, T.Suga, Y. H.Zhang, et al., First demonstration of waferscale heterogeneous integration of GaO MOSFETs on SiC and Si substrates by ion-cutting process, in , San Francisco, CA, USA, 2019, pp. 12.5.1–12.5.4.
Y. B.Wang, W. H.Xu, G. Q.Han, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, X. C.Zhang, H.Huang, T.Suga, et al., Channel properties of GaO-on-SiC MOSFETs, , vol. 68, no. 3, pp. 1185–1189, 2021.
K.Tetzner, E. B.Treidel, O.Hilt, A.Popp, S. B.Anooz, G.Wagner, A.Thies, K.Ickert, H.Gargouri, and J.Würfl, Lateral 1.8 kV -GaO MOSFET with 155 MW/cm power figure of merit, , vol. 40, no. 9, pp. 1503–1506, 2019.
H.Zhou, K.Maize, G.Qiu, A.Shakouri, and P. D.Ye, -GaO on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect, , vol. 111, no. 9, p. 092102, 2017.
Y. J.Lv, H. Y.Liu, X. Y.Zhou, Y. G.Wang, X. B.Song, Y. C.Cai, Q. L.Yan, C. L.Wang, S. X.Liang, J. C.Zhang, et al., Lateral -GaO MOSFETs with high power figure of merit of 277 MW/cm, , vol. 41, no. 4, pp. 537–540, 2020.
H.Dong, H. W.Xue, Q. M.He, Y.Qin, G. Z.Jian, S. B.Long, and M.Liu, Progress of power field effect transistor based on ultra-wide bandgap GaO semiconductor material, . , vol. 40, no. 1, p. 011802, 2019.
Z. Z.Hu, H.Zhou, Q.Feng, J. C.Zhang, C. F.Zhang, K.Dang, Y. C.Cai, Z. Q.Feng, Y. Y.Gao, X. W.Kang, et al., Field-plated lateral -GaO schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm, , vol. 39, no. 10, pp. 1564–1567, 2018.
Z. Z.Hu, H.Zhou, K.Dang, Y. C.Cai, Z. Q.Feng, Y. Y.Gao, Q.Feng, J. C.Zhang, and Y.Hao, Lateral -GaO schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV, , vol. 6, pp. 815–820, 2018.
K.Sasaki, M.Higashiwaki, A.Kuramata, T.Masui, and S.Yamakoshi, Si ion implantation doping in -GaO and its application to fabrication of low-resistance ohmic contacts, , vol. 6, no. 8, p. 086502, 2013.
P. H.Carey IV, J. C.Yang, F.Ren, D. C.Hays, S. J.Pearton, S.Jang, A.Kuramata, and I. I.Kravchenko, Ohmic contacts on n-type -GaO using AZO/Ti/Au, , vol. 7, no. 9, p. 095313, 2017.
S. W.Jang, S. W.Jung, K.Beers, J. C.Yang, F.Ren, A.Kuramata, S. J.Pearton, and K. H.Baik, A comparative study of wet etching and contacts on (–201) and (010) oriented -GaO, . , vol. 731, pp. 118–125, 2018.
B.Fu, Z. T.Jia, W. X.Mu, Y. R.Yin, J.Zhang, and X. T.Tao, A review of -GaO single crystal defects, their effects on device performance and their formation mechanism. . , vol. 40, no. 1, p. 011804, 2019.
M. H.Wong, C. H.Lin, A.Kuramata, S.Yamakoshi, H.Murakami, Y.Kumagai, and M.Higashiwaki, Acceptor doping of -GaO by Mg and N ion implantations, , vol. 113, no. 10, p. 102103, 2018.
S.Nakagomi and Y.Kokubun, Cross-sectional TEM imaging of -GaO thin films formed on -plane and -plane sapphire substrates, , vol. 210, no. 9, pp. 1738–1744, 2013.
T.Akita, M.Okumura, K.Tanaka, S.Tsubota, and M.Haruta, Analytical TEM observation of Au and Ir deposited on rutile TiO, . , vol. 52, no. 2, pp. 119–124, 2003.
Ma P, Zheng J, Zhang Y, et al. Investigation on n-Type (–201) β-Ga2O3 Ohmic Contact via Si Ion Implantation. Tsinghua Science and Technology, 2023, 28(1): 150-154. https://doi.org/10.26599/TST.2021.9010039
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).