State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information
Hide Author Information
Abstract
Heavy doped n-type -GaO (HD-GaO) was obtained by employing Si ion implantation technology on unintentionally doped -GaO single crystal substrates. To repair the GaO lattice damage and activate the Si after implantation, the implanted substrates were annealed at 950℃, 1000℃, and 1100℃, respectively. High-resolution X-ray diffraction and high-resolution transmission electron microscopy show that the ion-implanted layer has high lattice quality after high-temperature annealing at 1000℃. The minimum specific contact resistance is 9.2×10–5Ω·cm2, which is attributed to the titanium oxide that is formed at the Ti/GaO interface via rapid thermal annealing at 480℃. Based on these results, the lateral -GaO diodes were prepared, and the diodes exhibit high forward current density and low specific on-resistance.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
S. J.Pearton, J. C.Yang, P. H.Cary IV, F.Ren, J.Kim, M. J.Tadjer, and M. A.Mastro, A review of GaO materials, processing, and devices, Appl. Phys. Rev., vol. 5, no. 1, p. 011301, 2018.
H. P.Zhang, L.Yuan, X. Y.Tang, J. C.Hu, J. W.Sun, Y. M.Zhang, Y. M.Zhang, and R. X.Jia, Progress of ultra-wide bandgap GaO semiconductor materials in power MOSFETs, IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5157–5179, 2020.
J.Millán, P.Godignon, X.Perpiñà, A.Pérez-Tomás, and J.Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, 2014.
W. X.Mu, Z. T.Jia, Y. R.Yin, Q. Q.Hu, Y.Li, B. Y.Wu, J.Zhang, and X. T.Tao, High quality crystal growth and anisotropic physical characterization of -GaO single crystals grown by EFG method, . Alloys Compd., vol. 714, pp. 453–458, 2017.
H. F.Mohamed, C. T.Xia, Q. L.Sai, H. Y.Cui, M. Y.Pan, and H. J.Qi, Growth and fundamentals of bulk -GaO single crystals, . Semicond., vol. 40, no. 1, p. 011801, 2019.
Y. B.Wang, W. H.Xu, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, H.Huang, T.Suga, G. Q.Han, X.Ou, et al., -GaO MOSFETs on the Si substrate fabricated by the ion-cutting process, Sci. China Phys. Mech. Astron., vol. 63, no. 7, p. 277311, 2020.
Y. B.Wang, W. H.Xu, G. Q.Han, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, X. C.Zhang, H.Huang, T.Suga, et al., Temperature-dependent characteristics of Schottky barrier diode on heterogeneous -GaO(–201)-AlO-Si substrate,. Phys. D: Appl. Phys., vol. 54, no. 3, p. 034004, 2021.
W. H.Xu, Y. B.Wang, T. G.You, X.Ou, G. Q.Han, H. D.Hu, S. B.Zhang, F. W.Mu, T.Suga, Y. H.Zhang, et al., First demonstration of waferscale heterogeneous integration of GaO MOSFETs on SiC and Si substrates by ion-cutting process, inProc. of IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2019, pp. 12.5.1–12.5.4.
Y. B.Wang, W. H.Xu, G. Q.Han, T. G.You, F. W.Mu, H. D.Hu, Y.Liu, X. C.Zhang, H.Huang, T.Suga, et al., Channel properties of GaO-on-SiC MOSFETs, IEEE Trans. Electron Devices, vol. 68, no. 3, pp. 1185–1189, 2021.
K.Tetzner, E. B.Treidel, O.Hilt, A.Popp, S. B.Anooz, G.Wagner, A.Thies, K.Ickert, H.Gargouri, and J.Würfl, Lateral 1.8 kV -GaO MOSFET with 155 MW/cm power figure of merit, IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, 2019.
H.Zhou, K.Maize, G.Qiu, A.Shakouri, and P. D.Ye, -GaO on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect, Appl. Phys. Lett., vol. 111, no. 9, p. 092102, 2017.
Y. J.Lv, H. Y.Liu, X. Y.Zhou, Y. G.Wang, X. B.Song, Y. C.Cai, Q. L.Yan, C. L.Wang, S. X.Liang, J. C.Zhang, et al., Lateral -GaO MOSFETs with high power figure of merit of 277 MW/cm, IEEE Electron Device Lett., vol. 41, no. 4, pp. 537–540, 2020.
H.Dong, H. W.Xue, Q. M.He, Y.Qin, G. Z.Jian, S. B.Long, and M.Liu, Progress of power field effect transistor based on ultra-wide bandgap GaO semiconductor material, . Semicond., vol. 40, no. 1, p. 011802, 2019.
Z. Z.Hu, H.Zhou, Q.Feng, J. C.Zhang, C. F.Zhang, K.Dang, Y. C.Cai, Z. Q.Feng, Y. Y.Gao, X. W.Kang, et al., Field-plated lateral -GaO schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm, IEEE Electron Device Lett., vol. 39, no. 10, pp. 1564–1567, 2018.
Z. Z.Hu, H.Zhou, K.Dang, Y. C.Cai, Z. Q.Feng, Y. Y.Gao, Q.Feng, J. C.Zhang, and Y.Hao, Lateral -GaO schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV, IEEE J. Electron Devices Soc., vol. 6, pp. 815–820, 2018.
K.Sasaki, M.Higashiwaki, A.Kuramata, T.Masui, and S.Yamakoshi, Si ion implantation doping in -GaO and its application to fabrication of low-resistance ohmic contacts, Appl. Phys. Exp., vol. 6, no. 8, p. 086502, 2013.
P. H.Carey IV, J. C.Yang, F.Ren, D. C.Hays, S. J.Pearton, S.Jang, A.Kuramata, and I. I.Kravchenko, Ohmic contacts on n-type -GaO using AZO/Ti/Au, AIP Adv., vol. 7, no. 9, p. 095313, 2017.
K.Zeng, J. S.Wallace, C.Heimburger, K.Sasaki, A.Kuramata, T.Masui, L. A.Gardella, and U.Singisetti, GaO MOSFETs using spin-on-glass source/drain doping technology, IEEE Electron Device Lett., vol. 38, no. 4, pp. 513–516, 2017.
S. W.Jang, S. W.Jung, K.Beers, J. C.Yang, F.Ren, A.Kuramata, S. J.Pearton, and K. H.Baik, A comparative study of wet etching and contacts on (–201) and (010) oriented -GaO, . Alloys Compd., vol. 731, pp. 118–125, 2018.
B.Fu, Z. T.Jia, W. X.Mu, Y. R.Yin, J.Zhang, and X. T.Tao, A review of -GaO single crystal defects, their effects on device performance and their formation mechanism. . Semicond., vol. 40, no. 1, p. 011804, 2019.
M. H.Wong, C. H.Lin, A.Kuramata, S.Yamakoshi, H.Murakami, Y.Kumagai, and M.Higashiwaki, Acceptor doping of -GaO by Mg and N ion implantations, Appl. Phys. Lett., vol. 113, no. 10, p. 102103, 2018.
S.Nakagomi and Y.Kokubun, Cross-sectional TEM imaging of -GaO thin films formed on -plane and -plane sapphire substrates, Phys. Status Solidi A, vol. 210, no. 9, pp. 1738–1744, 2013.
T.Akita, M.Okumura, K.Tanaka, S.Tsubota, and M.Haruta, Analytical TEM observation of Au and Ir deposited on rutile TiO, . Electron Microsc., vol. 52, no. 2, pp. 119–124, 2003.
Ma P, Zheng J, Zhang Y, et al. Investigation on n-Type (–201) β-Ga2O3 Ohmic Contact via Si Ion Implantation. Tsinghua Science and Technology, 2023, 28(1): 150-154. https://doi.org/10.26599/TST.2021.9010039
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
10.26599/TST.2021.9010039.F001
Cross-section of the device with Si implanted in the cathode used to test I-V characteristics.
10.26599/TST.2021.9010039.F002
High-resolution XRD 2– scans of the (–201) -GaO unimplanted substrate, as-implanted substrate, and Si-implanted substrates after annealing treatment under different temperatures of 950℃, 1000℃, and 1100℃.
10.26599/TST.2021.9010039.F003
(a) I-V test results of the ohmic contact with different active temperatures after ion implantation and (b) CTLM data of the contact resistance before and after correction vs. electrode spacing.
10.26599/TST.2021.9010039.F004
(a) and (b) TEM cross-section images of HD-GaO annealed under 1000℃, (c) selected area electron diffraction spectrum of ion implantation layer, and (d) EDX element mapping of the metal/GaO interface.
10.26599/TST.2021.9010039.F005
Forward I-V characteristics of -GaO SBD.