PDF (23.3 MB)
Collect
Submit Manuscript
Open Access

Overview of Ultra-Wideband Transceivers—System Architectures and Applications

School of Integrated Circuits, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

The Ultra-WideBand (UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication. This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB (IR-UWB) and Frequency-Modulation UWB (FM-UWB) methods. The link margin enhancement technique, Very-WideBand (VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things (IoT) applications.

References

[1]
L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., vol. 21, no. 6, pp. 26-54, 2004.
[2]
S. L. Geng, X. C. Chen, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A power-efficient all-digital IR-UWB transmitter with configurable pulse shaping by utilizing a digital amplitude modulation technique, in Proc. 2012 IEEE Asian Solid State Circuits Conf. (A-SSCC), Kobe, Japan, 2012, pp. 85-88.
[3]
S. L. Geng, W. Rhee, and Z. H. Wang, A pulse-shaped power amplifier with dynamic bias switching for IR-UWB transmitters, in Proc. 2012 IEEE Int. Symp. Circuits and Systems (ISCAS), Seoul, Republic of Korea, 2012, pp. 2529-2532.
[4]
Q. Shi, S. Zhao, X. Cui, M. Lu, and M. Jia, Anchor self-localization algorithm based on UWB ranging and inertial measurements, Tsinghua Science and Technology, vol. 24, no. 6, pp. 728-737, 2019.
[5]
T. Terada, R. Fujiwara, G. Ono, T. Norimatsu, T. Nakagawa, M. Miyazaki, K. Suzuki, K. Yano, A. Maeki, Y. Ogata, et al., Intermittent operation control scheme for reducing power consumption of UWB-IR receiver, IEEE J. Solid-St. Circ., vol. 44, no. 10, pp. 2702-2710, 2009.
[6]
M. U. Nair, Y. J. Zheng, C. W. Ang, Y. Lian, X. J. Yuan, and C. H. Heng, A low SIR impulse-UWB transceiver utilizing chirp FSK in 0.18 μm CMOS, IEEE J. Solid-St. Circ., vol. 45, no. 11, pp. 2388-2403, 2010.
[7]
D. Liu, X. W. Ni, R. R. Zhou, W. Rhee, and Z. H. Wang, A 0.42-mW 1-Mb/s 3- to 4-GHz transceiver in 0.18-μm CMOS with flexible efficiency, bandwidth, and distance control for IoT applications, IEEE J. Solid-St. Circ., vol. 52, no. 6, pp. 1479-1494, 2017.
[8]
J. F. M. Gerrits, M. H. L. Kouwenhoven, P. R. van der Meer, J. R. Farserotu, and J. R. Long, Principles and limitations of ultra-wideband FM communications systems, EURASIP J. Adv. Signal Process., vol. 2005, p. 189150, 2005.
[9]
B. Zhou, R. He, J. Qiao, J. H. Liu, W. Rhee, and Z. H. Wang, A low data rate FM-UWB transmitter with-based sub-carrier modulation and quasi-continuous frequency-locked loop, in Proc. 2010 IEEE Asian Solid-State Circuits Conf. , Beijing, China, 2010, pp. 1-4.
[10]
B. Zhou, H. Lv, M. Wang, J. H. Liu, W. Rhee, Y. M. Li, D. Kim, and Z. H. Wang, A 1 Mb/s 3.2-4.4 GHz reconfigurable FM-UWB transmitter in 0.18 μm CMOS, in Proc. 2011 IEEE Radio Frequency Integrated Circuits Symp., Baltimore, MD, USA, 2011, pp. 1-4.
[11]
F. Chen, Y. Li, D. Liu, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A 1 mW 1 Mb/s 7.75-to-8.25 GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability, in Proc. 2014 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 162-163.
[12]
IEEE standard for low-rate wireless networks, https://ieeexplore.ieee.org/document/9144691, 2020.
[13]
X. Wang, Y. Yu, B. Busze, and H. W. Pflug, A meter-range UWB transceiver chipset for around-the-head audio streaming, in Proc. 2010 IEEE Int. Solid-State Circuits Conf. (ISSCC), .
[14]
Y. Park and D. D. Wentzloff, IR-UWB transmitters synthesized from standard digital library components, in Proc. 2010 IEEE Int. Symp. Circuits and Systems, Paris, France, 2010, pp. 3296-3299.
[15]
L. Wang, Y. X. Guo, Y. Lian, and C. H. Heng, 3-to-5GHz 4-channel UWB beamforming transmitter with 1 phase resolution through calibrated vernier delay line in 0.13 μm CMOS, in Proc. 2012 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2012, pp. 444-446.
[16]
D. Lachartre, B. Denis, D. Morche, L. Ouvry, M. Pezzin, B. Piaget, J. Prouvee, and P. Vincent, A 1.1nJ/b 802.15.4a-compliant fully integrated UWB transceiver in 0.13 μm CMOS, in Proc. 2009 IEEE Int. Solid-State Circuits Conf.-Digest of Technical Papers, San Francisco, CA, USA, .
[17]
D. Liu, X. F. Liu, W. Rhee, and Z. H. Wang, A 7.6 mW 2 Gb/s proximity transmitter for smartphone-mirrored display applications, in Proc. 2015 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Xiamen, China, 2015, pp. 1-4.
[18]
N. Van Helleputte, M. Verhelst, W. Dehaene, and G. Gielen, A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging, IEEE J. Solid-St. Circ., vol. 45, no. 1, pp. 69-83, 2010.
[19]
D. Morche, G. Masson, S. De Rivaz, F. Dehmas, S. Paquelet, A. Bisiaux, O. Fourquin, J. Gaubert, and S. Bourdel, Double-quadrature UWB receiver for wide-range localization applications with sub-cm ranging precision, IEEE J. Solid-St. Circ., vol. 48, no. 10, pp. 2351-2362, 2013.
[20]
H. X. Song, D. Liu, W. Rhee, and Z. H. Wang, A 6-8 GHz 200 MHz bandwidth 9-channel VWB transceiver with 8 frequency-hopping subbands, in Proc. 2018 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Tainan, China, 2018, pp. 295-298.
[21]
J. F. M. Gerrits, H. Bonakdar, M. Detratti, E. Perez, M. Lobeira, Y. Zhao, Y. Dong, G. van Veenendaal, J. R. Long, J. R. Farserotu, et al., A 7.2-7.7 GHz FM-UWB transceiver prototype, in Proc. 2009 IEEE Int. Conf. Ultra-Wideband, Vancouver, Canada, 2009, pp. 580-585.
[22]
N. Saputra and J. R. Long, A short-range low data-rate regenerative FM-UWB receiver, IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 1131-1140, 2011.
[23]
Y. Z. Dong, Y. Zhao, J. F. M. Gerrits, G. van Veenendaal, and J. R. Long, A 9 mW high band FM-UWB receiver front-end, in Proc. ESSCIRC 2008 - 34th European Solid-State Circuits Conf., Edinburgh, UK, 2008, pp. 302-305.
[24]
F. Chen, W. Zhang, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A 3.8-mW 3.5-4-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters, IEEE Trans. Microw. Theory Tech., vol. 61, no. 9, pp. 3350-3359, 2013.
[25]
D. Liu, X. H. Huang, Z. D. Ding, H. X. Song, W. Rhee, and Z. H. Wang, A 26.6 mW 1 Gb/s dual-antenna wideband receiver with auto beam steering for secure proximity communications, in Proc. 2018 IEEE Custom Integrated Circuits Conf. (CICC), San Diego, CA, USA, 2018, pp. 1-4.
[26]
J. Ko and R. Gharpurey, A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications, IEEE J. Solid-St. Circ., vol. 51, no. 5, pp. 1177-1187, 2016.
[27]
C. H. Hu, R. Khanna, J. Nejedlo, K. M. Hu, H. P. Liu, and P. Y. Chiang, A 90 nm-CMOS, 500 Mbps, 3-5 GHz fully-integrated IR-UWB transceiver with multipath equalization using pulse injection-locking for receiver phase synchronization, IEEE J. Solid-St. Circ., vol. 46, no. 5, pp. 1076-1088, 2011.
[28]
N. S. Kim and J. M. Rabaey, A high data-rate energy-efficient triple-channel UWB-based cognitive radio, IEEE J. Solid-St. Circ., vol. 51, no. 4, pp. 809-820, 2016.
[29]
G. Lee, J. Park, J. Jang, T. Jung, and T. W. Kim, An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication, IEEE J. Solid-St. Circ., vol. 54, no. 8, pp. 2163-2174, 2019.
[30]
H. X. Song, D. Liu, Y. N. Zhang, W. Rhee, and Z. H. Wang, A 6.5-8.1-GHz communication/ranging VWB transceiver for secure wireless connectivity with enhanced bandwidth efficiency and ΔΣ energy detection, IEEE J. Solid-St. Circ., vol. 55, no. 2, pp. 219-232, 2020.
[31]
H. X. Song, W. Rhee, and Z. H. Wang, A 6-8 GHz multichannel reconfigurable pulse-based transceiver with 3.5 ns processing latency and 1 cm ranging accuracy for secure wireless connectivity, in Proc. 2020 IEEE Custom Integrated Circuits Conf. (CICC), Boston, MA, USA, 2020, pp. 1-4.
[32]
H. X. Song, Z. D. Ding, W. Rhee, and Z. H. Wang, A secure TOF-based transceiver with low latency and sub-cm ranging for mobile authentication applications, in Proc. 2018 IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Philadelphia, PA, USA, 2018, pp. 160-163.
Tsinghua Science and Technology
Pages 481-494
Cite this article:
Wang B, Song H, Rhee W, et al. Overview of Ultra-Wideband Transceivers—System Architectures and Applications. Tsinghua Science and Technology, 2022, 27(3): 481-494. https://doi.org/10.26599/TST.2021.9010044
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return