AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Privacy-Aware Examination Results Ranking for the Balance Between Teachers and Mothers

Department of College English Teaching, Qufu Normal University, Rizhao 276826, China
Department of Physical Education, Qufu Normal University, Rizhao 276826, China
Department of Basketball, Rizhao Sports School, Rizhao 276800, China
School of Computer Science, Qufu Normal University, Rizhao 276826, China
Show Author Information

Abstract

As the main parent and guardian, mothers are often concerned with the study performance of their children. More specifically, most mothers are eager to know the concrete examination scores of their children. However, with the continuous progress of modern education systems, most schools or teachers have now been forbidden to release sensitive student examination scores to the public due to privacy concerns, which has made it infeasible for mothers to know the real study level or examination performance of their children. Therefore, a conflict has come to exist between teachers and mothers, which harms the general growing up of students in their study. In view of this challenge, we propose a Privacy-aware Examination Results Ranking (PERR) method to attempt at balancing teachers’ privacy disclosure concerns and the mothers’ concerns over their children’s examination performance. By drawing on a relevant case study, we prove the effectiveness of the proposed PERR method in evaluating and ranking students according to their examination scores while at the same time securing sensitive student information.

References

[1]
U. Beyazit and A. B. Ayhan, A study on the mother education program for the prevention of child neglect, Psychol. Rep., vol. 122, no. 6, pp. 2178-2200, 2019.
[2]
M. U. Farooq, M. Z. Rafique, and M. A. R. Shah, The effects of mother education and intervening mechanisms on rural-urban child stunting: Evidence from Pakistan, Rev. Pan-Amaz. Saúde, .
[3]
E. Jiménez-Pérez, M. I. de V.-Y. Jara, R. Gutiérrez-Fresneda, and P. García-Guirao, Sustainable education, emotional intelligence and mother-child reading competencies within multiple mediation models, Sustainability, vol. 13, no. 4, p. 1803, 2021.
[4]
T. Nygård, N. Hirvonen, S. Räisänen, and R. L. Korkeamäki, Ask your mother! Teachers’ informational authority roles in information-seeking and evaluation tasks in health education lessons, Scandinavian Journal of Educational Research, .
[5]
H. Z. Kou, H. W. Liu, Y. C. Duan, W. W. Gong, Y. W. Xu, X. L. Xu, and L. Y. Qi, Building trust/distrust relationships on signed social network through privacy-aware link prediction, Applied Soft Computing, vol. 100, p. 106942, 2021.
[6]
X. L. Xu, R. C. Mo, X. C. Yin, M. R. Khosravi, F. Aghaei, V. Chang, and G. S. Li, PDM: Privacy-aware deployment of machine-learning applications for industrial cyber-physical cloud systems, IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5819-5828, 2021.
[7]
Y. Jin, W. G. Guo, and Y. W. Zhang, A time-aware dynamic service quality prediction approach for services, Tsinghua Science and Technology, vol. 25, no. 2, pp. 227-238, 2020.
[8]
Q. Liu, P. L. Hou, G. J. Wang, T. Peng, and S. B. Zhang, Intelligent route planning on large road networks with efficiency and privacy, Journal of Parallel and Distributed Computing, vol. 133, pp. 93-106, 2019.
[9]
Z. C. Sun, Y. J. Wang, Z. P. Cai, T. E. Liu, X. R. Tong, and N. Jiang, A two-stage privacy protection mechanism based on blockchain in mobile crowdsourcing, International Journal of Intelligent Systems, vol. 36, no. 5, pp. 2058-2080, 2021.
[10]
Y. Xu, C. Zhang, Q. R. Zeng, G. J. Wang, J. Ren, and Y. X. Zhang, Blockchain-enabled accountability mechanism against information leakage in vertical industry services, IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1202-1213, 2021.
[11]
T. E. Liu, Y. J. Wang, Y. S. Li, X. R. Tong, L. Y. Qi, and N. Jiang, Privacy protection based on stream cipher for spatio-temporal data in IoT, IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7928-7940, 2020.
[12]
M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics, vol. 3, no. 2, pp. 85-101, 2020.
[13]
A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi, Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection, Big Data Mining and Analytics, vol. 4, no. 1, pp. 18-24, 2021.
[14]
T. T. Cai, J. X. Li, A. S. Mian, R. H. Li, T. Sellis, and J. X. Yu, Target-aware holistic influence maximization in spatial social networks, IEEE Transactions on Knowledge and Data Engineering, .
[15]
Y. Li, S. C. Xia, Q. Y. Yang, G. Y. Wang, and W. Y. Zhang, Lifetime-priority-driven resource allocation for WNV-based internet of things, IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4514-4525, 2021.
[16]
J. X. Li, T. T. Cai, K. Deng, X. J. Wang, T. Sellis, and F. Xia, Community-diversified influence maximization in social networks, Information Systems, vol. 92, p. 101522, 2020.
[17]
Q. Liu, G. J. Wang, F. Li, S. H. Yang, and J. Wu, Preserving privacy with probabilistic indistinguishability in weighted social networks, IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1417-1429, 2017.
[18]
N. Bhardwaj and P. Sharma, An advanced uncertainty measure using fuzzy soft sets: Application to decision-making problems, Big Data Mining and Analytics, vol. 4, no. 2, pp. 94-103, 2021.
[19]
Q. C. Cao, W. L. Zhang, and Y. H. Zhu, Deep learning-based classification of the polar emotions of “Moe”-style cartoon pictures, Tsinghua Science and Technology, vol. 26, no. 3, pp. 275-286, 2021.
[20]
X. Xue, S. F. Wang, L. J. Zhang, Z. Y. Feng, and Y. D. Guo, Social Learning Evolution (SLE): Computational experiment-based modeling framework of social manufacturing, IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3343-3355, 2019.
[21]
X. L. Xu, B. W. Shen, S. Ding, G. Srivastava, M. Bilal, M. R. Khosravi, V. G. Menon, M. A. Jan, and M. L. Wang, Service offloading with deep Q-network for digital twinning empowered internet of vehicles in edge computing, IEEE Transactions on Industrial Informatics, .
[22]
X. K. Wang, L. T. Yang, L. W. Song, H. H. Wang, L. Ren, and M. J. Deen, A tensor-based multi-attributes visual feature recognition method for industrial intelligence, IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2231-2241, 2021.
[23]
L. Ren, Z. H. Meng, X. K. Wang, L. Zhang, and L. T. Yang, A data-driven approach of product quality prediction for complex production systems, IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6457-6465, 2021.
[24]
L. Y. Qi, X. K. Wang, X. L. Xu, W. C. Dou, and S. C. Li, Privacy-aware cross-platform service recommendation based on enhanced locality-sensitive hashing, IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1145-1153, 2021.
[25]
L. Y. Qi, C. H. Hu, X. Y. Zhang, M. R. Khosravi, S. Sharma, S. N. Pang, and T. Wang, Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment, IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4159-4167, 2021.
[26]
Q. Liu, Y. Tian, J. Wu, T. Peng, and G. J. Wang, Enabling verifiable and dynamic ranked search over outsourced data, IEEE Transactions on Services Computing, .
[27]
Y. W. Liu, A. X. Pei, F. Wang, Y. H. Yang, X. Y. Zhang, H. Wang, H. N. Dai, and L. Y. Qi, An attention-based category-aware GRU model for the next POI recommendation, International Journal of Intelligent Systems, vol. 36, no. 7, pp. 3174-3189, 2021.
[28]
X. L. Yang, X. H. Jia, M. K. Yuan, and D. M. Yan, Real-time facial pose estimation and tracking by coarse-to-fine iterative optimization, Tsinghua Science and Technology, vol. 25, no. 5, pp. 690-700, 2020.
[29]
F. Wang, H. B. Zhu, G. Srivastava, S. C. Li, M. R. Khosravi, and L. Y. Qi, Robust collaborative filtering recommendation with user-item-trust records, IEEE Transactions on Computational Social Systems, .
[30]
Y. J. Wang, Z. P. Cai, Z. H. Zhan, Y. J. Gong, and X. R. Tong, An optimization and auction based incentive mechanism to maximize social welfare for mobile crowdsourcing, IEEE Transactions on Computational Social Systems, vol. 6, no. 3, pp. 414-429, 2019.
[31]
Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, and Y. X. Zhang, Blockchain empowered arbitrable data auditing scheme for network storage as a service, IEEE Transactions on Services Computing, vol. 13, no. 2, pp. 289-300, 2020.
[32]
Y. Xu, C. Zhang, G. J. Wang, Z. Qin, and Q. R. Zeng, A blockchain-enabled deduplicatable data auditing mechanism for network storage services, IEEE Transactions on Emerging Topics in Computing, .
[33]
Y. Xu, J. Ren, G. J. Wang, C. Zhang, J. D. Yang, and Y. X. Zhang, A blockchain-based nonrepudiation network computing service scheme for industrial IoT, IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3632-3641, 2019.
[34]
Z. P. Cai and X. Zheng, A private and efficient mechanism for data uploading in smart cyber-physical systems, IEEE Transactions on Network Science and Engineering, vol. 7, no. 2, pp. 766-775, 2020.
[35]
X. Zheng and Z. P. Cai, Privacy-preserved data sharing towards multiple parties in industrial IoTs, IEEE Journal on Selected Areas in Communications, vol. 38, no. 5, pp. 968-979, 2020.
[36]
K. Y. Li, G. M. Lu, G. C. Luo, and Z. P. Cai, Seed-free graph de-anonymiztiation with adversarial learning, in Proc. 29th ACM Int. Conf. Information and Knowledge Management, Virtual Event, Ireland, 2020, pp. 745-754.
[37]
X. Chen, Z. D. Yuan, Z. Q. Cui, D. Zhang, and X. L. Ju, Empirical studies on the impact of filter-based ranking feature selection on security vulnerability prediction, IET Software, vol. 15, no. 1, pp. 75-89, 2021.
[38]
X. Chen, Y. Q. Zhao, Z. Q. Cui, G. Z. Meng, Y. Liu, and Z. Wang, Large-scale empirical studies on effort-aware security vulnerability prediction methods, IEEE Transactions on Reliability, vol. 69, no. 1, pp. 70-87, 2020.
[39]
Y. Li, Z. Y. Zhang, S. C. Xia, and H. H. Chen, A load-balanced re-embedding scheme for wireless network virtualization, IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3761-3772, 2021.
[40]
S. M. Meng, W. J. Huang, X. C. Yin, M. R. Khosravi, Q. M. Li, S. H. Wan, and L. Y. Qi, Security-aware dynamic scheduling for real-time optimization in cloud-based industrial applications, IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4219-4228, 2021.
[41]
Y. Li, S. C. Xia, M. Y. Zheng, B. Cao, and Q. L. Liu, Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks, IEEE Transactions on Cloud Computing, .
[42]
Y. Chen, Y. C. Zhang, Y. Wu, L. Y. Qi, X. Chen, and X. M. Shen, Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply, IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8419-8429, 2020.
[43]
Y. Li, H. Ma, L. Wang, S. W. Mao, and G. Y. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Transactions on Mobile Computing, .
[44]
X. L. Xu, X. Y. Zhang, M. Khan, W. C. Dou, S. J. Xue, and S. Yu, A balanced virtual machine scheduling method for energy-performance trade-offs in cyber-physical cloud systems, Future Generation Computer Systems, vol. 105, pp. 789-799, 2020.
[45]
Y. Li, J. Liu, B. Cao, and C. Wang, Joint optimization of radio and virtual machine resources with uncertain user demands in mobile cloud computing, IEEE Transactions on Multimedia, vol. 20, no. 9, pp. 2427-2438, 2018.
Tsinghua Science and Technology
Pages 581-588
Cite this article:
Yuan Q, Wang D, Zhao Y, et al. Privacy-Aware Examination Results Ranking for the Balance Between Teachers and Mothers. Tsinghua Science and Technology, 2022, 27(3): 581-588. https://doi.org/10.26599/TST.2021.9010052

921

Views

59

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 01 March 2021
Revised: 29 June 2021
Accepted: 02 July 2021
Published: 13 November 2021
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return