AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Developments and Applications of Tunneling Magnetoresistance Sensors

School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute of Beihang University, Qingdao 266100, China
Show Author Information

Abstract

Magnetic sensors based on tunneling magnetoresistance (TMR) effect exhibit high sensitivity, small size, and low power consumption. They have gained a lot of attention and have potential applications in various domains. This study first introduces the development history and basic principles of TMR sensors. Then, a comprehensive description of TMR sensors linearization and Wheatstone bridge configuration is presented. Two key performance parameters, the field sensitivity and noise mechanisms, are considered. Finally, the emerging applications of TMR sensors are discussed.

References

[1]
X. Y. Liu, K. H. Lam, K. Zhu, C. Zheng, X. Li, Y. M. Du, C. H. Liu, and P. W. T. Pong, Overview of spintronic sensors with Internet of Things for smart living, IEEE Trans. Magn., vol. 55, no. 11, p. 0800222, 2019.
[2]
R. S. Popovic, P. M. Drljaca, and C. Schott, Bridging the gap between AMR, GMR, and Hall magnetic sensors, in Proc. 23rd Int. Conf. Microelectronics, Nis, Yugoslavia, 2002, pp. 55-58.
[3]
W. Thomson, XIX. On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron, Proc. Roy. Soc. Lond., vol. 8, pp. 546-550, 1857.
[4]
R. Hunt, A magnetoresistive readout transducer, IEEE Trans. Magn., vol. 7, no. 1, pp. 150-154, 1971.
[5]
J. M. Daughton, Magnetoresistive memory technology, Thin Solid Films, vol. 216, no. 1, pp. 162-168, 1992.
[6]
W. Su, Z. G. Wang, T. Wen, Z. Q. Hu, J. G. Wu, Z. Y. Zhou, and M. Liu, Linear anisotropic magnetoresistive sensor without Barber-pole electrodes, IEEE Electr. Device Lett., vol. 40, no. 6, pp. 969-972, 2019.
[7]
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., vol. 61, no. 21, pp. 2472-2475, 1988.
[8]
G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, vol. 39, no. 7, pp. 4828-4830, 1989.
[9]
B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers, Phys. Rev. B, vol. 43, no. 1, pp. 1297-1300, 1991.
[10]
T. Miyazaki and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction, J. Magn. Magn. Mater., vol. 139, no. 3, pp. L231-L234, 1995.
[11]
D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions, Appl. Phys. Lett., vol. 86, no. 9, p. 092502, 2005.
[12]
C. Zheng, K. Zhu, S. C. de Freitas, J. Y. Chang, J. E. Davies, P. Eames, P. P. Freitas, O. Kazakova, C. Kim, C. W. Leung, et al., Magnetoresistive sensor development roadmap (non-recording applications), IEEE Trans. Magn., vol. 55, no. 4, p. 0800130, 2019.
[13]
P. P. Freitas, R. Ferreira, and S. Cardoso, Spintronic sensors, Proc. IEEE, vol. 104, no. 10, pp. 1894-1918, 2016.
[14]
R. C. Chaves, S. Cardoso, R. Ferreira, and P. P. Freitas, Low aspect ratio micron size tunnel magnetoresistance sensors with permanent magnet biasing integrated in the top lead, J. Appl. Phys., vol. 109, no. 7, p. 07E506, 2011.
[15]
A. V. Silva, D. C. Leitao, J. Valadeiro, J. Amaral, P. P. Freitas, and S. Cardoso, Linearization strategies for high sensitivity magnetoresistive sensors, Eur. Phys. J. Appl. Phys., vol. 72, no. 1, p. 10601, 2015.
[16]
P. Wiśniowski, J. M. Almeida, S. Cardoso, N. P. Barradas, and P. P. Freitas, Effect of free layer thickness and shape anisotropy on the transfer curves of MgO magnetic tunnel junctions, J. Appl. Phys., vol. 103, no. 7, p. 07A910, 2008.
[17]
R. Ferreira, E. Paz, P. P. Freitas, J. Wang, and S. Xue, Large area and low aspect ratio linear magnetic tunnel junctions with a soft-pinned sensing layer, IEEE Trans. Magn., vol. 48, no. 11, pp. 3719-3722, 2012.
[18]
T. Nakano, M. Oogane, T. Furuichi, and Y. Ando, Magnetic tunnel junctions using perpendicularly magnetized synthetic antiferromagnetic reference layer for wide-dynamic-range magnetic sensors, Appl. Phys. Lett., vol. 110, p. 012401, 2017.
[19]
Z. Q. Cao, W. B. Chen, S. Y. Lu, S. H. Yan, Y. Zhang, Z. T. Zhou, Y. D. Yang, Z. Li, W. S. Zhao, and Q. W. Leng, Tuning the linear field range of tunnel magnetoresistive sensor with MgO capping in perpendicular pinned double-interface CoFeB/MgO structure, Appl. Phys. Lett., vol. 118, p. 122402, 2021.
[20]
L. Yuan, S. H. Liou, and D. X. Wang, Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures, Phys. Rev. B, vol. 73, no. 13, p. 134403, 2006.
[21]
C. Reig, S. Cardoso, and S. C. Mukhopadhyay, Giant Magnetoresistance (GMR) Sensors: From Basis to State-of-the-Art Applications. Berlin, Germany: Springer-Verlag, 2013.
[22]
F. Franco, M. Silca, S. Cardoso, and P. P. Freitas, Optimization of asymmetric reference structures through non-evenly layered synthetic antiferromagnet for full bridge magnetic sensors based on CoFeB/MgO/CoFeB, Appl. Phys. Lett., vol. 118, p. 072401, 2021.
[23]
M. D. Cubells-Beltran, C. Reig, D. R. Munoz, S. I. P. C. de Freitas, and P. J. P. de Freitas, Full Wheatstone bridge spin-valve based sensors for IC currents monitoring, IEEE Sens. J., vol. 9, no. 12, pp. 1756-1762, 2009.
[24]
I. Berthold, M. Müller, S. Klötzer, R. Ebert, S. Thomas, P. Matthes, M. Albrecht, and H. Exner, Investigation of selective realignment of the preferred magnetic direction in spin-valve layer stacks using laser radiation, Appl. Surf. Sci., vol. 302, pp. 159-162, 2014.
[25]
S. H. Yan, Z. Q. Cao, Z. X. Guo, Z. Y. Zheng, A. N. Cao, Y. Qi, Q. W. Leng, and W. S. Zhao, Design and fabrication of full wheatstone-bridge-based angular GMR sensors, Sensors, vol. 18, p. 1832, 2018.
[26]
Z. Q. Cao, Y. M. Wei, W. J. Chen, S. H. Yan, L. Lin, Z. Li, L. Z. Wang, H. W. Yang, Q. W. Leng, and W. S. Zhao, Tuning the pinning direction of giant magnetoresistive sensor by post annealing process, Sci. China Inform. Sci., vol. 64, p. 162402, 2021.
[27]
J. G. Deak, Practical Tunneling magnetoresistive Z-axis sensors, in Proc. AMA Conf., Nuremberg, Germany, 2015, pp. 245-250.
[28]
Z. H. Jin, M. A. I. Mohd Noor Sam, M. Oogane, and Y. Ando, Serial MTJ-based TMR sensors in bridge configuration for detection of fractured steel bar in magnetic flux leakage testing, Sensors, vol. 21, no. 2, p. 668, 2021.
[29]
D. X. Wang, C. Nordman, J. M. Daughton, Z. H. Qian, and J. Fink, 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers, IEEE Trans. Magn., vol. 40, no. 4, pp. 2269-2271, 2004.
[30]
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater., vol. 3, pp. 862-867, 2004.
[31]
Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier, Appl. Phys. Lett., vol. 90, p. 212507, 2007.
[32]
N. Kudo, M. Oogane, M. Tsunoda, and Y. Ando, Polycrystalline Co2Fe0.4Mn0.6Si Heusler alloy thin films with high B2 ordering and small magnetic anisotropy for magnetic tunnel junction based sensors, AIP Adv., vol. 9, p. 125036, 2019.
[33]
J. P. Valadeiro, J. Amaral, D. C. Leitão, R. Ferreira, S. F. Cardoso, and P. J. P. Freitas, Strategies for pTesla field detection using magnetoresistive sensors with a soft-pinned sensing layer, IEEE Trans. Magn., vol. 51, no. 1, p. 4400204, 2015.
[34]
Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai, and P. W. T. Pong, Review of noise sources in magnetic tunnel junction sensors, IEEE Trans. Magn., vol. 47, no. 3, pp. 602-612, 2011.
[35]
W. F. Egelhoff Jr, P. W. T. Pong, J. Unguris, R. D. McMichael, E. R. Nowak, A. S. Edelstein, J. E. Burnette, and G. A. Fischer, Critical challenges for picoTesla magnetic-tunnel-junction sensors, Sensor. Actuat. A: Phys., vol. 155, no. 2, pp. 217-225, 2009.
[36]
H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev., vol. 32, no. 1, pp. 110-113, 1928.
[37]
J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev., vol. 32, no. 1, pp. 97-109, 1928.
[38]
S. Ingvarsson, G. Xiao, S. S. P. Parkin, W. J. Gallagher, G. Grinstein, and R. H. Koch, Low-frequency magnetic noise in micron-scale magnetic tunnel junctions, Phys. Rev. Lett., vol. 85, no. 15, pp. 3289-3292, 2000.
[39]
N. Smith and P. Arnett, White-noise magnetization fluctuations in magnetoresistive heads, Appl. Phys. Lett., vol. 78, no. 10, pp. 1448-1450, 2001.
[40]
J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., vol. 74, no. 16, pp. 3273-3276, 1995.
[41]
E. R. Nowak, M. B. Weissman, and S. S. P. Parkin, Electrical noise in hysteretic ferromagnet-insulator-ferromagnet tunnel junctions, Appl. Phys. Lett., vol. 74, no. 4, pp. 600-602, 1999.
[42]
J. M. Almeida, P. Wisniowski, and P. P. Freitas, Low-frequency noise in MgO magnetic tunnel junctions: Hooge’s parameter dependence on bias voltage, IEEE Trans. Magn., vol. 44, no. 11, pp. 2569-2572, 2008.
[43]
R. Guerrero, M. Pannetier-Lecoeur, C. Fermon, S. Cardoso, R. Ferreira, and P. P. Freitas, Low frequency noise in arrays of magnetic tunnel junctions connected in series and parallel, J. Appl. Phys., vol. 105, no. 11, p. 113922, 2009.
[44]
A. S. Edelstein, G. A. Fischer, M. Pedersen, E. R. Nowak, S. F. Cheng, and C. A. Nordman, Progress toward a thousandfold reduction in 1/f noise in magnetic sensors using an ac microelectromechanical system flux concentrator (invited), J. Appl. Phys., vol. 99, no. 8, p. 08B317, 2006.
[45]
Y. S. Cui, B. Khodadadi, S. Schäfer, T. Mewes, J. W. Lu, and S. A. Wolf, Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films, Appl. Phys. Lett., vol. 102, no. 16, p. 162403, 2013.
[46]
Y. C. Zhou, Low noise dual free-layer magnetoresistive sensor with coupled resonance, J. Appl. Phys., vol. 105, no. 7, p. 07B708, 2009.
[47]
P. Wisniowski, M. Da̧bek, W. Skowronski, T. Stobiecki, S. Cardoso, and P. P. Freitas, Reduction of low frequency magnetic noise by voltage-induced magnetic anisotropy modulation in tunneling magnetoresistance sensors, Appl. Phys. Lett., vol. 105, p. 082404, 2014.
[48]
B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, et al., Opportunities and challenges for spintronics in the microelectronics industry, Nat. Electron., vol. 3, no. 8, pp. 446-459, 2020.
[49]
P. P. Sharma, E. Albisetti, M. Massetti, M. Scolari, C. La Torre, M. Monticelli, M. Leone, F. Damin, G. Gervasoni, G. Ferrari, et al., Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors, Sensor. Actuat. B: Chem., vol. 242, pp. 280-287, 2017.
[50]
D. Q. Su, K. Wu, R. Saha, C. Y. Peng, and J. P. Wang, Advances in magnetoresistive biosensors, Micromachines, vol. 11, no. 1, p. 34, 2020.
[51]
M. L. Wang, Y. Wang, L. Peng, and C. F. Ye, Measurement of triaxial magnetocardiography using high sensitivity tunnel magnetoresistance sensor, IEEE Sens. J., vol. 19, no. 21, pp. 9610-9615, 2019.
[52]
K. Fujiwara, M. Oogane, A. Kanno, M. Imada, J. Jono, T. Terauchi, T. Okuno, Y. Aritomi, M. Morikawa, M. Tsuchida, et al., Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors, Appl. Phys. Express, vol. 11, no. 2, p. 023001, 2018.
[53]
D. Moretti, M. L. DiFrancesco, P. P. Sharma, S. Dante, E. Albisetti, M. Monticelli, R. Bertacco, D. Petti, P. Baldelli, and F. Benfenati, Biocompatibility of a magnetic tunnel junction sensor array for the detection of neuronal signals in culture, Front. Neurosci., vol. 12, p. 909, 2018.
[54]
J. Y. Chen, Y. C. Lau, J. M. D. Coey, M. Li, and J. P. Wang, High performance MgO-barrier magnetic tunnel junctions for flexible and wearable spintronic applications, Sci. Rep., vol. 7, p. 42001, 2017.
[55]
L. M. Loong, W. Lee, X. P. Qiu, P. Yang, H. Kawai, M. Saeys, J. H. Ahn, and H. Yang, Flexible MgO barrier magnetic tunnel junctions, Adv. Mater., vol. 28, no. 25, pp. 4983-4990, 2016.
[56]
A. Tanwear, X. P. Liang, Y. C. Liu, A. Vuckovic, R. Ghannam, T. Bohnert, E. Paz, P. P. Freitas, R. Ferreira, and H. Heidari, Spintronic sensors based on magnetic tunnel junctions for wireless eye movement gesture control, IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 6, pp. 1299-1310, 2020.
[57]
G. S. Cañón Bermúdez, H. Fuchs, L. Bischoff, J. Fassbender, and D. Makarov, Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics, Nat. Electron., vol. 1, pp. 589-595, 2018.
[58]
Z. P. Song, Z. C. Cao, Z. J. Li, J. L. Wang, and Y. H. Liu, Inertial motion tracking on mobile and wearable devices: Recent advancements and challenges, Tsinghua Science and Technology, vo. 26, no. 5, pp. 692-705, 2021.
[59]
J. S. Donnal and S. B. Leeb, Noncontact power meter, IEEE Sens. J., vol. 15, no. 2, pp. 1161-1169, 2015.
[60]
E. G. Vidal, D. R. Muñoz, S. I. R. Arias, J. S. Moreno, S. Cardoso, R. Ferreira, and P. Freitas, Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor, Materials, vol. 10, no. 10, p. 1134, 2017.
[61]
X. Sun, Q. Huang, Y. H. Hou, L. J. Jiang, and P. W. T. Pong, Noncontact operation-state monitoring technology based on magnetic-field sensing for overhead high-voltage transmission lines, IEEE Trans. Power Deliv., vol. 28, no. 4, pp. 2145-2153, 2013.
[62]
X. Sun, W. K. Lee, Y. H. Hou, and P. W. T. Pong, Underground power cable detection and inspection technology based on magnetic field sensing at ground surface level, IEEE Trans. Magn., vol. 50, no. 7, p. 6200605, 2014.
[63]
L. S. Rosado, F. A. Cardoso, S. Cardoso, P. M. Ramos, P. P. Freitas, and M. Piedade, Eddy currents testing probe with magneto-resistive sensors and differential measurement, Sensor. Actuat. A: Phys., vol. 212, pp. 58-67, 2014.
[64]
Y. H. Bai, C. F. Ye, X. C. Tao, N. Zhang, and X. G. Li, Magnetic imaging of sludge outside steam generator tube with array magnetoresistance sensors, IEEE Sens. J., vol. 21, no. 6, pp. 7439-7448, 2021.
[65]
C. F. Ye, Y. Wang, and Y. Tao, High-density large-scale TMR sensor array for magnetic field imaging, IEEE Trans. Instrum. Meas., vol. 68, no. 7, pp. 2594-2601, 2019.
[66]
N. Maciel, E. Marques, L. Naviner, Y. L. Zhou, and H. Cai, Magnetic tunnel junction applications, Sensors, vol. 20, no. 1, p. 121, 2020.
[67]
A. Sengupta, C. M. Liyanagedera, B. Jung, and K. Roy, Magnetic tunnel junction as an on-chip temperature sensor, Sci. Rep., vol. 7, no. 1, p. 11764, 2017.
[68]
Y. F. Jiang, Y. S. Zhang, A. Klemm, and J. P. Wang, Fast spintronic thermal sensor for IC power driver cooling down, in Proc.2016 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2016, pp. 26.2.1-26.2.4.
Tsinghua Science and Technology
Pages 443-454
Cite this article:
Yan S, Zhou Z, Yang Y, et al. Developments and Applications of Tunneling Magnetoresistance Sensors. Tsinghua Science and Technology, 2022, 27(3): 443-454. https://doi.org/10.26599/TST.2021.9010061

1750

Views

386

Downloads

36

Crossref

28

Web of Science

37

Scopus

2

CSCD

Altmetrics

Received: 27 February 2021
Revised: 30 June 2021
Accepted: 04 August 2021
Published: 13 November 2021
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return