AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

980 nm Near-Infrared Light-Emitting Diode Using All-Inorganic Perovskite Nanocrystals Doped with Ytterbium Ions

Zhenglan Ye1,2,Taoran Liu1,2,3,Dan Chen1,2Yazhou Yang1,2Jiayi Li1,2Yaqing Pang1,2Xiangquan Liu1,2Yuhua Zuo1,2( )Jun Zheng1,2Zhi Liu1,2Buwen Cheng1,2
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Intelligent Network Research Institute, Zhejiang Lab, Hangzhou 311100, China

† Zhenglan Ye and Taoran Liu contribute equally to this paper.

Show Author Information

Abstract

All-inorganic perovskite (CsPbX 3) nanocrystals (NCs) have recently been widely investigated as versatile solution-processable light-emitting materials. Due to its wide-bandgap nature, the all-inorganic perovskite NC Light-Emitting Diode (LED) is limited to the visible region (400–700 nm). A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region. In this work, a 980 nm NIR all-inorganic perovskite NC LED is demonstrated, which is based on an efficient energy transfer from wide-bandgap materials (CsPbCl 3 NCs) to ytterbium ions (Yb 3+) as an NIR emitter doped in perovskite NCs. The optimized CsPbCl 3 NC with 15 mol%Yb 3+ doping concentration has the strongest 980 nm photoluminescence (PL) peak, with a PL quantum yield of 63%. An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT: PSS/poly-TPD/CsPbCl 3:15 mol%Yb 3+ NCs/TPBi/LiF/Al. The LED has an External Quantum Efficiency (EQE) of 0.2%, a Full Width at Half Maximum (FWHM) of 47 nm, and a maximum luminescence of 182 cd/m 2. The introduction of Yb 3+ doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration.

References

[1]
X. K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, and F. Gao, Metal halide perovskites for light-emitting diodes, Nat. Mater., vol. 20, no. 1, pp. 10–21, 2021.
[2]
H. Tsai, S. Shrestha, R. A. Vilá, W. Huang, C. Liu, C. H. Hou, H. H. Huang, X. Wen, M. Li, G. Wiederrecht, et al., Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks, Nat. Photonics, vol. 15, no. 11, pp. 843–849, 2021.
[3]
X. Zhao, J. De Andrew Ng, R. H. Friend, and Z. K. Tan, Opportunities and challenges in perovskite light-emitting devices, ACS Photonics, vol. 5, no. 10, pp. 3866–3875, 2018.
[4]
X. Li, X. Gao, X. Zhang, X. Shen, M. Lu, J. Wu, Z. Shi, V. L. Colvin, J. Hu, X. Bai, et al., Lead-free halide perovskites for light emission: Recent advances and perspectives, Adv. Sci., vol. 8, no. 4, p. 2003334, 2021.
[5]
A. Ren, H. Wang, W. Zhang, J. Wu, Z. Wang, R. V. Penty, and I. H. White, Emerging light-emitting diodes for next-generation data communications, Nat. Electron., vol. 4, no. 8, pp. 559–572, 2021.
[6]
H. Jung, N. Ahn, and V. I. Klimov, Prospects and challenges of colloidal quantum dot laser diodes, Nat. Photonics, vol. 15, no. 9, pp. 643–655, 2021.
[7]
Y. F. Li, J. Feng, and H. B. Sun, Perovskite quantum dots for light-emitting devices, Nanoscale, vol. 11, no. 41, pp. 19119–19139, 2019.
[8]
L. Zhou, K. Yu, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance, Dalton Trans., vol. 46, no. 6, pp. 1766–1769, 2017.
[9]
X. Liu, T. Liu, D. Chen, Y. Yang, Z. Ye, Y. Zuo, J. Zheng, Z. Liu, and B. Cheng, Broad-spectrum germanium photodetector based on the ytterbium-doped perovskite nanocrystal downshifting effect, ACS Appl. Opt. Mater., vol. 1, no. 1, pp. 507–512, 2023.
[10]
, Y. Duan, and B. Liu, Recent advances of optical imaging in the second near-infrared window, Adv. Mater., vol. 30, no. 47, p. 1802394, 2018.
[11]
N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes, Science, vol. 295, no. 5559, pp. 1506–1508, 2002.
[12]
K. N. Bourdakos, D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device, Appl. Phys. Lett., vol. 92, no. 15, p. 153311, 2008.
[13]
G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulovic, High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots, Adv. Mater., vol. 27, no. 8, pp. 1437–1442, 2015.
[14]
M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, et al., Prospects of nanoscience with nanocrystals, ACS Nano, vol. 9, no. 2, pp. 1012–1057, 2015.
[15]
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., vol. 15, no. 6, pp. 3692–3696, 2015.
[16]
D. Chen, T. Liu, Y. Zuo, C. Li, J. Zheng, Z. Liu, B. Liu, and B. Cheng, Brightness and lifetime improved light-emitting diodes from Sr-doped quasi-two-dimensional perovskite layers, Tsinghua Science and Technology, vol. 28, no. 1, pp. 131–140, 2023.
[17]
B. Liu, X. Zou, D. Chen, T. Liu, Y. Zuo, J. Zheng, Z. Liu, and B. Cheng, Effect of chloride Ion concentrations on luminescence peak blue shift of light-emitting diode using anti-solvent extraction of quasi-two-dimensional perovskite, Tsinghua Science and Technology, vol. 26, no. 4, pp. 496–504, 2021.
[18]
G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors, Nature, vol. 442, no. 7099, pp. 180–183, 2006.
[19]
L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control, Nat. Nanotechnol., vol. 7, no. 6, pp. 369–373, 2012.
[20]
I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., vol. 4, no. 6, pp. 435–446, 2005.
[21]
L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, et al., Dismantling the “red wall” of colloidal perovskites: Highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals, ACS Nano, vol. 11, no. 3, pp. 3119–3134, 2017.
[22]
I. Lignos, V. Morad, Y. Shynkarenko, C. Bernasconi, R. M. Maceiczyk, L. Protesescu, F. Bertolotti, S. Kumar, S. T. Ochsenbein, N. Masciocchi, et al., Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform, ACS Nano, vol. 12, no. 6, pp. 5504–5517, 2018.
[23]
A. Ishii and T. Miyasaka, Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes, Adv. Sci., vol. 7, no. 4, p. 1903142, 2020.
[24]
H. Wang, N. Sui, X. Bai, Y. Zhang, Q. Rice, F. J. Seo, Q. Zhang, V. L. Colvin, and W. W. Yu, Emission recovery and stability enhancement of inorganic perovskite quantum dots, J. Phys. Chem. Lett., vol. 9, no. 15, pp. 4166–4173, 2018.
[25]
C. Zou, C. Y. Huang, E. M. Sanehira, J. M. Luther, and L. Y. Lin, Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes, Nanotechnology, vol. 28, no. 45, p. 455201, 2017.
[26]
A. Pan, J. Wang, M. J. Jurow, M. Jia, Y. Liu, Y. Wu, Y. Zhang, L. He, and Y. Liu, General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals, Chem. Mater., vol. 30, no. 8, pp. 2771–2780, 2018.
[27]
T. Fang, T. Wang, X. Li, Y. Dong, S. Bai, and J. Song, Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport, Sci. Bull., vol. 66, no. 1, pp. 36–43, 2021.
[28]
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, and J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nat. Photonics, vol. 12, no. 11, pp. 681–687, 2018.
[29]
K. Zhang, N. Zhu, M. Zhang, L. Wang, and J. Xing, Opportunities and challenges in perovskite LED commercialization, J. Mater. Chem. C, vol. 9, no. 11, pp. 3795–3799, 2021.
[30]
J. Huang, M. Lai, J. Lin, and P. Yang, Rich chemistry in inorganic halide perovskite nanostructures, Adv. Mater., vol. 30, no. 48, p. 1802856, 2018.
Tsinghua Science and Technology
Pages 207-215
Cite this article:
Ye Z, Liu T, Chen D, et al. 980 nm Near-Infrared Light-Emitting Diode Using All-Inorganic Perovskite Nanocrystals Doped with Ytterbium Ions. Tsinghua Science and Technology, 2024, 29(1): 207-215. https://doi.org/10.26599/TST.2022.9010070

373

Views

27

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 20 October 2022
Revised: 26 December 2022
Accepted: 29 December 2022
Published: 21 August 2023
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return