State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Intelligent Network Research Institute, Zhejiang Lab, Hangzhou 311100, China
† Zhenglan Ye and Taoran Liu contribute equally to this paper.
Show Author Information
Hide Author Information
Abstract
All-inorganic perovskite (CsPbX) nanocrystals (NCs) have recently been widely investigated as versatile solution-processable light-emitting materials. Due to its wide-bandgap nature, the all-inorganic perovskite NC Light-Emitting Diode (LED) is limited to the visible region (400–700 nm). A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region. In this work, a 980 nm NIR all-inorganic perovskite NC LED is demonstrated, which is based on an efficient energy transfer from wide-bandgap materials (CsPbCl NCs) to ytterbium ions (Yb) as an NIR emitter doped in perovskite NCs. The optimized CsPbCl NC with 15 mol%Yb doping concentration has the strongest 980 nm photoluminescence (PL) peak, with a PL quantum yield of 63%. An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT: PSS/poly-TPD/CsPbCl:15 mol%Yb NCs/TPBi/LiF/Al. The LED has an External Quantum Efficiency (EQE) of 0.2%, a Full Width at Half Maximum (FWHM) of 47 nm, and a maximum luminescence of 182 cd/m. The introduction of Yb doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
X. K.Liu, W.Xu, S.Bai, Y.Jin, J.Wang, R. H.Friend, and F.Gao, Metal halide perovskites for light-emitting diodes, Nat. Mater., vol. 20, no. 1, pp. 10–21, 2021.
H.Tsai, S.Shrestha, R. A.Vilá, W.Huang, C.Liu, C. H.Hou, H. H.Huang, X.Wen, M.Li, G.Wiederrecht, et al., Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks, Nat. Photonics, vol. 15, no. 11, pp. 843–849, 2021.
X.Zhao, J.De Andrew Ng, R. H.Friend, and Z. K.Tan, Opportunities and challenges in perovskite light-emitting devices, ACS Photonics, vol. 5, no. 10, pp. 3866–3875, 2018.
A.Ren, H.Wang, W.Zhang, J.Wu, Z.Wang, R. V.Penty, and I. H.White, Emerging light-emitting diodes for next-generation data communications, Nat. Electron., vol. 4, no. 8, pp. 559–572, 2021.
K. N.Bourdakos, D. M. N. M.Dissanayake, T.Lutz, S. R. P.Silva, and R. J.Curry, Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device, Appl. Phys. Lett., vol. 92, no. 15, p. 153311, 2008.
G. J.Supran, K. W.Song, G. W.Hwang, R. E.Correa, J.Scherer, E. A.Dauler, Y.Shirasaki, M. G.Bawendi, and V.Bulovic, High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots, Adv. Mater., vol. 27, no. 8, pp. 1437–1442, 2015.
M. V.Kovalenko, L.Manna, A.Cabot, Z.Hens, D. V.Talapin, C. R.Kagan, V. I.Klimov, A. L.Rogach, P.Reiss, D. J.Milliron, et al., Prospects of nanoscience with nanocrystals, ACS Nano, vol. 9, no. 2, pp. 1012–1057, 2015.
L.Protesescu, S.Yakunin, M. I.Bodnarchuk, F.Krieg, R.Caputo, C. H.Hendon, R. X.Yang, A.Walsh, and M. V.Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., vol. 15, no. 6, pp. 3692–3696, 2015.
B.Liu, X.Zou, D.Chen, T.Liu, Y.Zuo, J.Zheng, Z.Liu, and B.Cheng, Effect of chloride Ion concentrations on luminescence peak blue shift of light-emitting diode using anti-solvent extraction of quasi-two-dimensional perovskite, Tsinghua Science and Technology, vol. 26, no. 4, pp. 496–504, 2021.
L.Sun, J. J.Choi, D.Stachnik, A. C.Bartnik, B. R.Hyun, G. G.Malliaras, T.Hanrath, and F. W.Wise, Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control, Nat. Nanotechnol., vol. 7, no. 6, pp. 369–373, 2012.
I. L.Medintz, H. T.Uyeda, E. R.Goldman, and H.Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., vol. 4, no. 6, pp. 435–446, 2005.
I.Lignos, V.Morad, Y.Shynkarenko, C.Bernasconi, R. M.Maceiczyk, L.Protesescu, F.Bertolotti, S.Kumar, S. T.Ochsenbein, N.Masciocchi, et al., Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform, ACS Nano, vol. 12, no. 6, pp. 5504–5517, 2018.
A.Ishii and T.Miyasaka, Sensitized Yb luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes, Adv. Sci., vol. 7, no. 4, p. 1903142, 2020.
H.Wang, N.Sui, X.Bai, Y.Zhang, Q.Rice, F. J.Seo, Q.Zhang, V. L.Colvin, and W. W.Yu, Emission recovery and stability enhancement of inorganic perovskite quantum dots, J. Phys. Chem. Lett., vol. 9, no. 15, pp. 4166–4173, 2018.
C.Zou, C. Y.Huang, E. M.Sanehira, J. M.Luther, and L. Y.Lin, Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes, Nanotechnology, vol. 28, no. 45, p. 455201, 2017.
A.Pan, J.Wang, M. J.Jurow, M.Jia, Y.Liu, Y.Wu, Y.Zhang, L.He, and Y.Liu, General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals, Chem. Mater., vol. 30, no. 8, pp. 2771–2780, 2018.
T.Fang, T.Wang, X.Li, Y.Dong, S.Bai, and J.Song, Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport, Sci. Bull., vol. 66, no. 1, pp. 36–43, 2021.
K.Zhang, N.Zhu, M.Zhang, L.Wang, and J.Xing, Opportunities and challenges in perovskite LED commercialization, J. Mater. Chem. C, vol. 9, no. 11, pp. 3795–3799, 2021.
Ye Z, Liu T, Chen D, et al. 980 nm Near-Infrared Light-Emitting Diode Using All-Inorganic Perovskite Nanocrystals Doped with Ytterbium Ions. Tsinghua Science and Technology, 2024, 29(1): 207-215. https://doi.org/10.26599/TST.2022.9010070
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).