Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the construction industry, to prevent accidents, non-destructive tests are necessary and cost-effective. Electrical impedance tomography is a new technology in non-invasive imaging in which the image of the inner part of conductive bodies is reconstructed by the arrays of external electrodes that are connected on the periphery of the object. The equipment is cheap, fast, and edge compatible. In this imaging method, the image of electrical conductivity distribution (or its opposite; electrical impedance) of the internal parts of the target object is reconstructed. The image reconstruction process is performed by injecting a precise electric current to the peripheral boundaries of the object, measuring the peripheral voltages induced from it and processing the collected data. In an electrical impedance tomography system, the voltages measured in the peripheral boundaries have a non-linear equation with the electrical conductivity distribution. This paper presents a cheap Electrical Impedance Tomography (EIT) instrument for detecting impurities in the concrete. A voltage-controlled current source, a micro-controller, a set of multiplexers, a set of electrodes, and a personal computer constitute the structure of the system. The conducted tests on concrete with impurities show that the designed EIT system can reveal impurities with a good accuracy in a reasonable time.
L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R. Khosravi, R. Wang, and L. Qi, Time-Aware missing healthcare data prediction based on ARIMA model, IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2022.3205064.
X. Zhou, X. Yang, J. Ma, and K. I. K. Wang, Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT, IEEE Internet Things J., vol. 9, no. 16, pp. 14988–14997, 2022.
X. Zhou, W. Liang, K. Yan, W. Li, K. I. K. Wang, J. Ma, and Q. Jin, Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything, IEEE Internet Things J., vol. 10, no. 4, pp. 3295–3304, 2023.
C. R. Bull, R. Zwiggelaar, and R. D. Speller, Review of inspection techniques based on the elastic and inelastic scattering of X-rays and their potential in the food and agricultural industry, J. Food Eng., vol. 33, nos. 1&2, pp. 167–179, 1997.
Y. Liu, J. Cheng, L. Zhang, Y. Xing, Z. Chen, and P. Zheng, A low-cost dual energy CT system with sparse data, Tsinghua Science and Technology, vol. 19, no. 2, pp. 184–194, 2014.
F. M. Bengel, T. Higuchi, M. S. Javadi, and R. Lautamäki, Cardiac positron emission tomography, J. Am. Coll. Cardiol., vol. 54, no. 1, pp. 1–15, 2009.
J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan, A survey of MRI-based brain tumor segmentation methods, Tsinghua Science and Technology, vol. 19, no. 6, pp. 578–595, 2014.
G. Wang, Holder David S: Electrical impedance tomography, BioMed. Eng. OnLine, vol. 4, no. 1, p. 27, 2005.
C. Li, N. Duric, P. Littrup, and L. Huang, In vivo breast sound-speed imaging with ultrasound tomography, Ultrasound Med. Biol., vol. 35, no. 10, pp. 1615–1628, 2009.
J. P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, and A. Weckenmann, Computed tomography for dimensional metrology, CIRP Annals, vol. 60, no. 2, pp. 821–842, 2011.
L. Kong, L. Wang, W. Gong, C. Yan, Y. Duan, and L. Qi, LSH-aware multitype health data prediction with privacy preservation in edge environment, World Wide Web, vol. 25, no. 5, pp. 1793–1808, 2022.
L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development, IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5444–5457, 2023.
X. Fan, M. Dai, C. Liu, F. Wu, X. Yan, Y. Feng, Y. Feng and B. Su, Effect of image noise on the classification of skin lesions using deep convolutional neural networks, Tsinghua Science and Technology, vol. 25, no. 3, pp. 425–434, 2020.
X. Zhou, Y. Hu, J. Wu, W. Liang, J. Ma, and Q. Jin, Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT, IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 570–580, 2023.
X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, Deep-learning-enhanced multitarget detection for end-edge-cloud surveillance in smart IoT, IEEE Internet Things J., vol. 8, no. 16, pp. 12588–12596, 2021.
L. Qi, Y. Yang, X. Zhou, W. Rafique, and J. Ma, Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp. 6503–6511, 2022.
H. Attar, H.Issa, J. Ababneh, M. Abbasi, A. Solyman, M. R. Khosravi, and R. S. Agieb, 5G system overview for ongoing smart applications: Structure, requirements, and specifications, Computational Intelligence and Neuroscience. doi: 10.1155/2022/2476841.
B. Hobbs and M. T. Kebir, Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings, Forensic Sci. Int., vol. 167, nos. 2&3, pp. 167–172, 2007.
M. Kumar, P. Mukherjee, S. Verma, N. Kavita, J. Shafi, M. Wozniak, and M. F. Ijaz, A smart privacy preserving framework for industrial IoT using hybrid meta-heuristic algorithm, Sci. Rep., vol. 13, no. 1, p. 5372, 2023.
F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi, and L. Qi, Robust collaborative filtering recommendation with user-item-trust records, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 986–996, 2022.
B. H. Brown, D. C. Barber, and A. D. Seagar, Applied potential tomography: Possible clinical applications, Clin. Phys. Physiol. Meas., vol. 6, no. 2, pp. 109–121, 1985.
B. H. Brown and A. D. Seagar, The Sheffield data collection system, Clin. Phys. Physiol. Meas., vol. 8, pp. 91–97, 1987.
T. I. Oh, E. J. Woo, and D. Holder, Multi-frequency EIT system with radially symmetric architecture: KHU Mark1, Physiol. Meas., vol. 28, no. 7, pp. S183–S196, 2007.
M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev., vol. 41, no. 1, pp. 85–101, 1999.
D. Isaacson and M. Cheny, Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms, SIAM J. Appl. Math., vol. 51, no. 6, pp. 1705–1731, 1991.
R. A. Willoughby, Solutions of ill-posed problems (AN Tikhonov and VY Arsenin), SIAM Review, vol. 21, p. 266, 1979.
F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.
E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., vol. 52, no. 4, pp. 1023–1040, 1992.
D. Isaacson, Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Med. Imaging, vol. 5, no. 2, pp. 91–95, 1986.
K. S. Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp. 918–924, 1989.
L. Borcea, Electrical impedance tomography, Inverse Problems, vol. 18, no. 6, pp. R99–R136, 2002.
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., vol. 143, no. 1, pp. 71–96, 1996.
S. Siltanen, J. Mueller, and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse Problems, vol. 16, no. 3, pp. 681–699, 2000.
R. M. Brown and G. A. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Communications in Partial Differential Equations, vol. 22, nos. 5&6, pp. 1009–1027, 1997.
K. Astala, J. L. Mueller, L. Päivärinta, and S. Siltanen, Numerical computation of complex geometrical optics solutions to the conductivity equation, Appl. Comput. Harmon. Anal., vol. 29, no. 1, pp. 2–17, 2010.
J. F. P. J. Abascal, S. R. Arridge, D. Atkinson, R. Horesh, L. Fabrizi, M. De Lucia, L. Horesh, R. H. Bayford, and D. S. Holder, Use of anisotropic modelling in electrical impedance tomography; description of method and preliminary assessment of utility in imaging brain function in the adult human head, NeuroImage, vol. 43, no. 2, pp. 258–268, 2008.
J. F. Lataste, C. Sirieix, D. Breysse, and M. Frappa, Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT E Int., vol. 36, no. 6, pp. 383–394, 2003.
K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. M. Monteiro, and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cem. Concr. Res., vol. 40, no. 1, pp. 137–145, 2010.
S. K. Dwivedi, M. Vishwakarma, and A. Soni, Advances and researches on non destructive testing: A review, Mater. Today: Proc., vol. 5, no. 2, pp. 3690–3698, 2018.
H. Wiggenhauser, C. Köpp, J. Timofeev, and H. Azari, Controlled creating of cracks in concrete for non-destructive testing, J. Nondestruct. Eval., vol. 37, no. 3, p. 67, 2018.
A. Ndagi, A. A. Umar, F. Hejazi, and M. S. Jaafar, Non-destructive assessment of concrete deterioration by ultrasonic pulse velocity: A review, IOP Conf. Ser.: Earth Environ. Sci., vol. 357, p. 012015, 2019.
S. Li, X. Gu, X. Xu, D. Xu, T. Zhang, Z. Liu, and Q. Dong, Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm, Constr. Build. Mater., vol. 273, p. 121949, 2021.
A. Mohan and S. Poobal, Crack detection using image processing: A critical review and analysis, Alex. Eng. J., vol. 57, no. 2, pp. 787–798, 2018.
T. C. Hou and J. P. Lynch, Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures, J. Intell. Mater. Syst. Struct., vol. 20, no. 11, pp. 1363–1379, 2009.
G. Trtnik and M. Gams, Recent advances of ultrasonic testing of cement based materials at early ages, Ultrasonics, vol. 54, pp. 66−75, 2014.
747
Views
136
Downloads
0
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).