AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Survey of Edge Caching: Key Issues and Challenges

School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang 262700, China
Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
Department of Computer Engineering, Hankuk University of Foreign Studies, Yongin-si 17035, Republic of Korea
Show Author Information

Abstract

With the rapid development of mobile communication technology and intelligent applications, the quantity of mobile devices and data traffic in networks have been growing exponentially, which poses a great burden to networks and brings huge challenge to servicing user demand. Edge caching, which utilizes the storage and computation resources of the edge to bring resources closer to end users, is a promising way to relieve network burden and enhance user experience. In this paper, we aim to survey the edge caching techniques from a comprehensive and systematic perspective. We first present an overview of edge caching, summarizing the three key issues regarding edge caching, i.e., where, what, and how to cache, and then introducing several significant caching metrics. We then carry out a detailed and in-depth elaboration on these three issues, which correspond to caching locations, caching objects, and caching strategies, respectively. In particular, we innovate on the issue “what to cache”, interpreting it as the classification of the “caching objects”, which can be further classified into content cache, data cache, and service cache. Finally, we discuss several open issues and challenges of edge caching to inspire future investigations in this research area.

References

[1]
U. Cisco, Cisco annual internet report (2018–2023) white paper, https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html, 2020.
[2]
M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, A review on Internet of Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT), in Proc. 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 2015, pp. 219–224.
[3]

X. Zhou, W. Liang, K. Yan, W. Li, K. I. K. Wang, J. Ma, and Q. Jin, Edge-enabled two-stage scheduling based on deep reinforcement learning for Internet of everything, IEEE Internet Things J., vol. 10, no. 4, pp. 3295–3304, 2023.

[4]

J. Hendler and J. Golbeck, Metcalfe’s law, web 2.0, and the semantic web, J. Web Semant., vol. 6, no. 1, pp. 14–20, 2008.

[5]
M. Alioto, Enabling the Internet of Things: From integrated circuits to integrated systems, https://api.semanticscholar.org/CorpusID:115720772, 2017.
[6]

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, A survey on mobile edge computing: The communication perspective, IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017.

[7]

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, Edge computing: Vision and challenges, IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016.

[8]

M. A. Maddah-Ali and U. Niesen, Fundamental limits of caching, IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[9]

C. Aggarwal, J. L. Wolf, and P. S. Yu, Caching on the world wide web, IEEE Trans. Knowl. Data Eng., vol. 11, no. 1, pp. 94–107, 1999.

[10]

X. Sun and N. Ansari, Dynamic resource caching in the IoT application layer for smart cities, IEEE Internet Things J., vol. 5, no. 2, pp. 606–613, 2018.

[11]

X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, Cache in the air: Exploiting content caching and delivery techniques for 5G systems, IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, 2014.

[12]

M. Satyanarayanan, The emergence of edge computing, Computer, vol. 50, no. 1, pp. 30–39, 2017.

[13]

D. Liu, B. Chen, C. Yang, and A. F. Molisch, Caching at the wireless edge: Design aspects, challenges, and future directions, IEEE Commun. Mag., vol. 54, no. 9, pp. 22–28, 2016.

[14]

L. Li, G. Zhao, and R. S. Blum, A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies, IEEE Commun. Surv. Tutor., vol. 20, no. 3, pp. 1710–1732, 2018.

[15]

J. Yao, T. Han, and N. Ansari, On mobile edge caching, IEEE Commun. Surv. Tutor., vol. 21, no. 3, pp. 2525–2553, 2019.

[16]

Z. Piao, M. Peng, Y. Liu, and M. Daneshmand, Recent advances of edge cache in radio access networks for Internet of Things: Techniques, performances, and challenges, IEEE Internet Things J., vol. 6, no. 1, pp. 1010–1028, 2019.

[17]

S. Safavat, N. N. Sapavath, and D. B. Rawat, Recent advances in mobile edge computing and content caching, Digit. Commun. Netw., vol. 6, no. 2, pp. 189–194, 2020.

[18]
D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and P. Hui, Edge intelligence: Architectures, challenges, and applications, arXiv preprint arXiv: 2003.12172, 2020.
[19]

H. Wu, Y. Fan, Y. Wang, H. Ma, and L. Xing, A comprehensive review on edge caching from the perspective of total process: Placement, policy and delivery, Sensors, vol. 21, no. 15, p. 5033, 2021.

[20]

J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, Applying machine learning techniques for caching in next-generation edge networks: A comprehensive survey, J. Netw. Comput. Appl., vol. 181, p. 103005, 2021.

[21]
M. Amadeo, C. Campolo, G. Ruggeri, and A. Molinaro, Edge caching in IoT smart environments: Benefits, challenges, and research perspectives toward 6G, in IoT Edge Solutions for Cognitive Buildings, F. Cicirelli, A. Guerrieri, A. Vinci, and G. Spezzano, eds. Cham, Switzerland: Springer, 2022, pp. 53–73.
[22]

M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, A review on the edge caching mechanisms in the mobile edge computing: A social-aware perspective, Internet Things, vol. 22, p. 100690, 2023.

[23]
J. Gu, W. Wang, A. Huang, H. Shan, and Z. Zhang, Distributed cache replacement for caching-enable base stations in cellular networks, in Proc. 2014 IEEE Int. Conf. Communications (ICC), Sydney, Australia, 2014, pp. 2648–2653.
[24]

J. Wen, K. Huang, S. Yang, and V. O. K. Li, Cache-enabled heterogeneous cellular networks: Optimal tier-level content placement, IEEE Trans. Wirel. Commun., vol. 16, no. 9, pp. 5939–5952, 2017.

[25]

J. Zhang, X. Zhang, and W. Wang, Cache-enabled software defined heterogeneous networks for green and flexible 5G networks, IEEE Access, vol. 4, pp. 3591–3604, 2016.

[26]

W. Guo, S. A. Wagan, D. R. Shin, and N. M. F. Qureshi, Cache-based green distributed cell dormancy technique for dense heterogeneous networks, Comput. Commun., vol. 191, pp. 69–77, 2022.

[27]

S. Zhang, N. Zhang, P. Yang, and X. Shen, Cost-effective cache deployment in mobile heterogeneous networks, IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 11264–11276, 2017.

[28]
S. Zhang, N. Zhang, X. Fang, P. Yang, and X. S. Shen, Cost-effective vehicular network planning with cache-enabled green roadside units, in Proc. 2017 IEEE Int. Conf. Communications (ICC), Paris, France, 2017, pp. 1–6.
[29]

L. Li, C. F. Kwong, Q. Liu, P. Kar, and S. P. Ardakani, A novel cooperative cache policy for wireless networks, Wirel. Commun. Mob. Comput., vol. 2021, pp. 1–18, 2021.

[30]

T. X. Zheng, H. M. Wang, and J. Yuan, Secure and energy-efficient transmissions in cache-enabled heterogeneous cellular networks: Performance analysis and optimization, IEEE Trans. Commun., vol. 66, no. 11, pp. 5554–5567, 2018.

[31]

Y. Zhu, G. Zheng, K. K. Wong, S. Jin, and S. Lambotharan, Performance analysis of cache-enabled millimeter wave small cell networks, IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6695–6699, 2018.

[32]
A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy, Learning distributed caching strategies in small cell networks, in Proc. 2014 11th Int. Symp. Wireless Commun. Syst. (ISWCS), Barcelona, Spain, 2014, pp. 917–921.
[33]

K. Hamidouche, W. Saad, M. Debbah, J. B. Song, and C. S. Hong, The 5G cellular backhaul management dilemma: To cache or to serve, IEEE Trans. Wirel. Commun., vol. 16, no. 8, pp. 4866–4879, 2017.

[34]

S. Krishnendu, B. N. Bharath, and V. Bhatia, Cache enabled cellular network: Algorithm for cache placement and guarantees, IEEE Wirel. Commun. Lett., vol. 8, no. 6, pp. 1550–1554, 2019.

[35]

S. Krishnendu, B. N. Bharath, N. Garg, V. Bhatia, and T. Ratnarajah, Learning to cache: Federated caching in a cellular network with correlated demands, IEEE Trans. Commun., vol. 70, no. 3, pp. 1653–1665, 2022.

[36]
Y. Cui, F. Lai, S. Hanly, and P. Whiting, Optimal caching and user association in cache-enabled heterogeneous wireless networks, in Proc. 2016 IEEE Global Communications Conf. (GLOBECOM), Washington, DC, USA, 2016, pp. 1–6.
[37]
D. Jiang and Y. Cui, Caching and multicasting in large-scale cache-enabled heterogeneous wireless networks, in Proc. 2016 IEEE Global Communications Conf. (GLOBECOM), Washington, DC, USA, 2016, pp. 1–7.
[38]

W. Yi, Y. Liu, and A. Nallanathan, Cache-enabled HetNets with millimeter wave small cells, IEEE Trans. Commun., vol. 66, no. 11, pp. 5497–5511, 2018.

[39]

V. Chandrasekhar, J. G. Andrews, and A. Gatherer, Femtocell networks: A survey, IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67, 2008.

[40]

H. Y. Lee and Y. B. Lin, A cache scheme for femtocell reselection, IEEE Commun. Lett., vol. 14, no. 1, pp. 27–29, 2010.

[41]
D. Liu and C. Yang, Cache-enabled heterogeneous cellular networks: Comparison and tradeoffs, in Proc. 2016 IEEE Int. Conf. Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1–6.
[42]

D. Liu and C. Yang, Caching policy toward maximal success probability and area spectral efficiency of cache-enabled HetNets, IEEE Trans. Commun., vol. 65, no. 6, pp. 2699–2714, 2017.

[43]
S. Kuang and N. Liu, Cache-enabled base station cooperation for heterogeneous cellular network with dependence, in Proc. 2017 IEEE Wireless Communications and Networking Conf. (WCNC), San Francisco, CA, USA, 2017, pp. 1–6.
[44]

T. Wang, Y. Wang, X. Wang, and Y. Cao, A detailed review of D2D cache in helper selection, World Wide Web, vol. 23, no. 4, pp. 2407–2428, 2020.

[45]

D. Wu, Q. Liu, H. Wang, Q. Yang, and R. Wang, Cache less for more: Exploiting cooperative video caching and delivery in D2D communications, IEEE Trans. Multimed., vol. 21, no. 7, pp. 1788–1798, 2019.

[46]

N. Anjum, Z. Yang, I. Khan, M. Kiran, F. Wu, K. Rabie, and S. M. Bahaei, Efficient algorithms for cache-throughput analysis in cellular-D2D 5G networks, Comput. Mater. Continua, vol. 67, no. 2, pp. 1759–1780, 2021.

[47]

F. H. Panahi, F. H. Panahi, and T. Ohtsuki, Energy efficiency analysis in cache-enabled D2D-aided heterogeneous cellular networks, IEEE Access, vol. 8, pp. 19540–19554, 2020.

[48]

Y. Meng, Z. Zhang, and Y. Huang, Cache- and energy harvesting-enabled D2D cellular network: Modeling, analysis and optimization, IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 703–713, 2021.

[49]

L. Shi, L. Zhao, G. Zheng, Z. Han, and Y. Ye, Incentive design for cache-enabled D2D underlaid cellular networks using stackelberg game, IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 765–779, 2019.

[50]

S. Soleimani and X. Tao, Cooperative crossing cache placement in cache-enabled device to device-aided cellular networks, Appl. Sci., vol. 8, no. 9, p. 1578, 2018.

[51]
Z. Chen and M. Kountouris, D2D caching vs. small cell caching: Where to cache content in a wireless network? in Proc. 2016 IEEE 17th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 2016, pp. 1–6.
[52]

W. Jiang, G. Feng, and S. Qin, Optimal cooperative content caching and delivery policy for heterogeneous cellular networks, IEEE Trans. Mob. Comput., vol. 16, no. 5, pp. 1382–1393, 2017.

[53]

Y. Wang, X. Tao, X. Zhang, and Y. Gu, Cooperative caching placement in cache-enabled D2D underlaid cellular network, IEEE Commun. Lett., vol. 21, no. 5, pp. 1151–1154, 2017.

[54]

I. Psaras, W. K. Chai, and G. Pavlou, In-network cache management and resource allocation for information-centric networks, IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2920–2931, 2014.

[55]

R. Crane and D. Sornette, Robust dynamic classes revealed by measuring the response function of a social system, Proc. Natl. Acad. Sci. USA, vol. 105, no. 41, pp. 15649–15653, 2008.

[56]

S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Niccolini, Temporal locality in today’s content caching: Why it matters and how to model it, ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 5, pp. 5–12, 2013.

[57]

S. M. S. Tanzil, W. Hoiles, and V. Krishnamurthy, Adaptive scheme for caching YouTube content in a cellular network: Machine learning approach, IEEE Access, vol. 5, pp. 5870–5881, 2017.

[58]

P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, Soft cache hits: Improving performance through recommendation and delivery of related content, IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1300–1313, 2018.

[59]

X. Xu, Q. Jiang, P. Zhang, X. Cao, M. R. Khosravi, L. T. Alex, L. Qi, and W. Dou, Game theory for distributed IoV task offloading with fuzzy neural network in edge computing, IEEE Trans. Fuzzy Syst., vol. 30, no. 11, pp. 4593–4604, 2022.

[60]

C. M. Martinez, M. Heucke, F. Y. Wang, B. Gao, and D. Cao, Driving style recognition for intelligent vehicle control and advanced driver assistance: A survey, IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 666–676, 2018.

[61]

H. Tian, X. Xu, L. Qi, X. Zhang, W. Dou, S. Yu, and Q. Ni, CoPace: Edge computation offloading and caching for self-driving with deep reinforcement learning, IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13281–13293, 2021.

[62]
T. Braud, P. Zhou, J. Kangasharju, and P. Hui, Multipath computation offloading for mobile augmented reality, in Proc. 2020 IEEE Int. Conf. Pervasive Computing and Communications (PerCom), Austin, TX, USA, 2020, pp. 1–10.
[63]
W. Zhang, B. Han, and P. Hui, Low latency mobile augmented reality with flexible tracking, in Proc. 24th Annual Int. Conf. Mobile Computing and Networking, New Delhi, India, 2018, pp. 829–831.
[64]
P. Guo, B. Hu, R. Li, and W. Hu, FoggyCache: Cross-device approximate computation reuse, in Proc. 24th Annual Int. Conf. Mobile Computing and Networking, New Delhi, India, 2018, pp. 19–34.
[65]

X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, Online collaborative data caching in edge computing, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 281–294, 2021.

[66]

X. Wang, S. Leng, and K. Yang, Social-aware edge caching in fog radio access networks, IEEE Access, vol. 5, pp. 8492–8501, 2017.

[67]
S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli, In-network caching of internet-of-things data, in Proc. 2014 IEEE Int. Conf. Communications (ICC), Sydney, Australia, 2014, pp. 3185–3190.
[68]

H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, Caching transient data for Internet of Things: A deep reinforcement learning approach, IEEE Internet Things J., vol. 6, no. 2, pp. 2074–2083, 2019.

[69]
J. Xu, L. Chen, and P. Zhou, Joint service caching and task offloading for mobile edge computing in dense networks, in Proc. IEEE INFOCOM 2018 - IEEE Conf. Computer Communications, Honolulu, HI, USA, 2018, pp. 207–215.
[70]

C. K. Huang and S. H. Shen, Enabling service cache in edge clouds, ACM Trans. Internet Things, vol. 2, no. 3, pp. 1–24, 2021.

[71]
Z. Zhang, H. Zhou, and D. Li, Joint optimization of multi-user computing offloading and service caching in mobile edge computing, in Proc. 2021 IEEE/ACM 29th Int. Symp. on Quality of Service (IWQOS), Tokyo, Japan, 2021, pp. 1–2.
[72]
T. X. Tran, K. Chan, and D. Pompili, COSTA: Cost-aware service caching and task offloading assignment in mobile-edge computing, in Proc. 2019 16th Annual IEEE Int. Conf. Sensing, Communication, and Networking (SECON), Boston, MA, USA, 2019, pp. 1–9.
[73]
J. Alghazo, A. Akaaboune, and N. Botros, SF-LRU cache replacement algorithm, in Proc. Records of the 2004 Int. Workshop on Memory Technology, Design and Testing, San Jose, CA, USA, 2004, pp. 19–24.
[74]
R. Subramanian, Y. Smaragdakis, and G. H. Loh, Adaptive caches: Effective shaping of cache behavior to workloads, in Proc. 2006 39th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO'06), Orlando, FL, USA, 2006, pp. 385–396.
[75]
Y. C. Hu and D. B. Johnson, Caching strategies in on-demand routing protocols for wireless ad hoc networks, in Proc. 6th annual Int. Conf. Mobile computing and networking, Boston, MA, USA, 2000, pp. 231–242.
[76]
N. Dimokas, D. Katsaros, L. Tassiulas, and Y. Manolopoulos, High performance, low complexity cooperative caching for wireless sensor networks, in Proc. 2009 IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, 2009, pp. 1–9.
[77]
E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, VIP: A framework for joint dynamic forwarding and caching in named data networks, in Proc. 1st ACM Conf. Information-Centric Networking, Paris, France, 2014, pp. 117–126.
[78]

M. Kosinski, D. Stillwell, and T. Graepel, Private traits and attributes are predictable from digital records of human behavior, Proc. Natl. Acad. Sci. USA, vol. 110, no. 15, pp. 5802–5805, 2013.

[79]

L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development, IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5444–5457, 2023.

[80]

S. Wu, S. Shen, X. Xu, Y. Chen, X. Zhou, D. Liu, X. Xue, and L. Qi, Popularity-aware and diverse web APIs recommendation based on correlation graph, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 2, pp. 771–782, 2023.

[81]

X. Zhou, W. Liang, K. I. K. Wang, and L. T. Yang, Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations, IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021.

[82]

E. Bastug, M. Bennis, and M. Debbah, Living on the edge: The role of proactive caching in 5G wireless networks, IEEE Commun. Mag., vol. 52, no. 8, pp. 82–89, 2014.

[83]

E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe, A. S. Er, and M. Debbah, Big data caching for networking: Moving from cloud to edge, IEEE Commun. Mag., vol. 54, no. 9, pp. 36–42, 2016.

[84]

L. Ale, N. Zhang, H. Wu, D. Chen, and T. Han, Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network, IEEE Internet Things J., vol. 6, no. 3, pp. 5520–5530, 2019.

[85]

Z. Zheng, L. Song, Z. Han, G. Y. Li, and H. V. Poor, A stackelberg game approach to proactive caching in large-scale mobile edge networks, IEEE Trans. Wirel. Commun., vol. 17, no. 8, pp. 5198–5211, 2018.

[86]

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, Realizing the tactile Internet: Haptic communications over next generation 5G cellular networks, IEEE Wirel. Commun., vol. 24, no. 2, pp. 82–89, 2017.

[87]

X. Huang, R. Yu, J. Kang, Y. He, and Y. Zhang, Exploring mobile edge computing for 5G-enabled software defined vehicular networks, IEEE Wirel. Commun., vol. 24, no. 6, pp. 55–63, 2017.

[88]
E. Herrero, J. González, and R. Canal, Distributed cooperative caching, in Proc. 2008 Int. Conf. Parallel Architectures and Compilation Techniques (PACT), Toronto, Canada, 2017, pp. 134–143.
[89]
S. Borst, V. Gupta, and A. Walid, Distributed caching algorithms for content distribution networks, in Proc. 2010 IEEE INFOCOM, San Diego, CA, USA, 2010, pp. 1–9.
[90]

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, FemtoCaching: Wireless content delivery through distributed caching helpers, IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413, 2013.

[91]
J. Liu, B. Bai, J. Zhang, and K. B. Letaief, Content caching at the wireless network edge: A distributed algorithm via belief propagation, in Proc. 2016 IEEE Int. Conf. Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1–6.
[92]

H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal, DIMA: Distributed cooperative microservice caching for Internet of Things in edge computing by deep reinforcement learning, World Wide Web, vol. 25, no. 5, pp. 1769–1792, 2022.

[93]

W. Ali, S. M. Shamsuddin, and A. S. Ismail, A survey of web caching and prefetching, Int. J. Adv. Soft Comput. Appl., vol. 3, no. 1, pp. 18–44, 2011.

[94]
J. Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu, and S. Wang, MAGIC: A distributed max-gain in-network caching strategy in information-centric networks, in Proc. 2014 IEEE Conf. Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2014, pp. 470–475.
[95]
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, Web caching and Zipf-like distributions: Evidence and implications, in Proc. IEEE INFOCOM '99. Conf. Computer Communications. Proceedings. Eighteenth Annual Joint Conf. IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), New York, NY, USA, 1999, pp. 126–134.
[96]

L. A. Adamic and B. A. Huberman, Zipf’s law and the Internet, Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[97]
M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S. Moon, I tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video system, in Proc. 7th ACM SIGCOMM Conf. Internet measurement, San Diego, CA, USA, 2007, pp. 1–14.
[98]

M. Ji, G. Caire, and A. F. Molisch, Fundamental limits of caching in wireless D2D networks, IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 849–869, 2016.

[99]
M. Mahloo, P. Monti, J. Chen, and L. Wosinska, Cost modeling of backhaul for mobile networks, in Proc. 2014 IEEE Int. Conf. Communications Workshops (ICC), Sydney, Australia, 2014, pp. 397–402.
[100]

S. Chia, M. Gasparroni, and P. Brick, The next challenge for cellular networks: Backhaul, IEEE Microw. Mag., vol. 10, no. 5, pp. 54–66, 2009.

[101]

S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, A survey of energy-efficient techniques for 5G networks and challenges ahead, IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709, 2016.

[102]

X. Zhou, X. Yang, J. Ma, and K. I. K. Wang, Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT, IEEE Internet Things J., vol. 9, no. 16, pp. 14988–14997, 2022.

[103]
J. Zhang, X. Zhang, M. A. Imran, B. Evans, and W. Wang, Energy efficiency analysis of heterogeneous cache-enabled 5G hyper cellular networks, in Proc. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 2016, pp. 1–6.
[104]

S. Verdu and S. Shamai, Spectral efficiency of CDMA with random spreading, IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 622–640, 1999.

[105]

H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems, IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, 2013.

[106]

C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, Energy- and spectral-efficiency tradeoff in downlink OFDMA networks, IEEE Trans. Wirel. Commun., vol. 10, no. 11, pp. 3874–3886, 2011.

[107]
D. Wessels, Web Caching. Sebastopol, CA, USA: O’Reilly Media, Inc., 2001.
[108]
S. I. Ahmed, S. Y. Ameen, and S. R. M. Zeebaree, 5G mobile communication system performance improvement with caching: A review, in Proc. 2021 Int. Conf. Modern Trends in Information and Communication Technology Industry (MTICTI), Sana’a, Yemen, 2021, pp. 1–8.
[109]

J. Cao, M. Ma, H. Li, R. Ma, Y. Sun, P. Yu, and L. Xiong, A survey on security aspects for 3GPP 5G networks, IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 170–195, 2020.

[110]

A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, 5G evolution: A view on 5G cellular technology beyond 3GPP release 15, IEEE Access, vol. 7, pp. 127639–127651, 2019.

[111]

P. Gandotra, R. K. Jha, and S. Jain, A survey on device-to-device (D2D) communication: Architecture and security issues, J. Netw. Comput. Appl., vol. 78, pp. 9–29, 2017.

[112]

M. Waqas, Y. Niu, Y. Li, M. Ahmed, D. Jin, S. Chen, and Z. Han, A comprehensive survey on mobility-aware D2D communications: Principles. practice and challenges, IEEE Commun. Surv. Tutor., vol. 22, no. 3, pp. 1863–1886, 2020.

[113]

A. Liu and V. K. N. Lau, How much cache is needed to achieve linear capacity scaling in backhaul-limited dense wireless networks? IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 179–188, 2017.

[114]

P. B. Heidorn, Shedding light on the dark data in the long tail of science, Libr. Trends, vol. 57, no. 2, pp. 280–299, 2008.

[115]

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration, IEEE Commun. Surv. Tutor., vol. 19, no. 3, pp. 1657–1681, 2017.

[116]

J. Pan and J. McElhannon, Future edge cloud and edge computing for Internet of Things applications, IEEE Internet Things J., vol. 5, no. 1, pp. 439–449, 2018.

[117]

D. W. Chadwick, W. Fan, G. Costantino, R. de Lemos, F. Di Cerbo, I. Herwono, M. Manea, P. Mori, A. Sajjad, and X. S. Wang, A cloud-edge based data security architecture for sharing and analysing cyber threat information, Future Gener. Comput. Syst., vol. 102, pp. 710–722, 2020.

[118]

X. Xu, H. Tian, X. Zhang, L. Qi, Q. He, and W. Dou, DisCOV: Distributed COVID-19 detection on X-ray images with edge-cloud collaboration, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1206–1219, 2022.

[119]

P. Cao, E. W. Felten, A. R. Karlin, and K. Li, A study of integrated prefetching and caching strategies, ACM SIGMETRICS Perform. Eval. Rev., vol. 23, no. 1, pp. 188–197, 1995.

[120]

S. Ioannidis and E. Yeh, Adaptive caching networks with optimality guarantees, IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 737–750, 2018.

[121]

P. Yang, N. Xiong, and J. Ren, Data security and privacy protection for cloud storage: A survey, IEEE Access, vol. 8, pp. 131723–131740, 2020.

[122]

J. Ni, K. Zhang, and A. V. Vasilakos, Security and privacy for mobile edge caching: Challenges and solutions, IEEE Wirel. Commun., vol. 28, no. 3, pp. 77–83, 2021.

[123]

L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, Security in mobile edge caching with reinforcement learning, IEEE Wirel. Commun., vol. 25, no. 3, pp. 116–122, 2018.

[124]
Z. Li, X. Xu, X. Cao, W. Liu, Y. Zhang, D. Chen, and H. Dai, Integrated CNN and federated learning for COVID-19 detection on chest X-ray images, IEEE/ACM Trans. Comput. Biol. Bioinform.
[125]

Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, Mobility-aware proactive edge caching for connected vehicles using federated learning, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5341–5351, 2021.

[126]

S. Liu, C. Zheng, Y. Huang, and T. Q. S. Quek, Distributed reinforcement learning for privacy-preserving dynamic edge caching, IEEE J. Sel. Areas Commun., vol. 40, no. 3, pp. 749–760, 2022.

[127]

Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. K. Kwok, Intelligent edge computing in Internet of vehicles: A joint computation offloading and caching solution, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4, pp. 2212–2225, 2021.

[128]
Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, 5G URLLC: Design challenges and system concepts, in Proc. 2018 15th Int. Symp. on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018, pp. 1–6.
[129]

X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, Deep-learning-enhanced multitarget detection for end–edge–cloud surveillance in smart IoT, IEEE Internet Things J., vol. 8, no. 16, pp. 12588–12596, 2021.

[130]

W. Liang, Y. Hu, X. Zhou, Y. Pan, and K. I. K. Wang, Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial IoT, IEEE Trans. Ind. Inform., vol. 18, no. 8, pp. 5087–5095, 2022.

[131]

I. Zyrianoff, A. Trotta, L. Sciullo, F. Montori, and M. Di Felice, IoT edge caching: Taxonomy, use cases and perspectives, IEEE Internet Things Mag., vol. 5, no. 3, pp. 12–18, 2022.

[132]

X. Xu, J. Gu, H. Yan, W. Liu, L. Qi, and X. Zhou, Reputation-aware supplier assessment for blockchain-enabled supply chain in industry 4.0, IEEE Trans. Ind. Inform., vol. 19, no. 4, pp. 5485–5494, 2023.

[133]

L. Qi, Y. Yang, X. Zhou, W. Rafique, and J. Ma, Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp. 6503–6511, 2022.

[134]

S. Gu, Y. Wang, N. Wang, and W. Wu, Intelligent optimization of availability and communication cost in satellite-UAV mobile edge caching system with fault-tolerant codes, IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1230–1241, 2020.

Tsinghua Science and Technology
Pages 818-842
Cite this article:
Li H, Sun M, Xia F, et al. A Survey of Edge Caching: Key Issues and Challenges. Tsinghua Science and Technology, 2024, 29(3): 818-842. https://doi.org/10.26599/TST.2023.9010051

887

Views

161

Downloads

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 25 February 2023
Revised: 07 May 2023
Accepted: 23 May 2023
Published: 04 December 2023
© The Author(s) 2024.

The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return