Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This work is the first to determine that a real quantum computer (including generalized and specialized) can decipher million-scale RSA relying solely on quantum algorithms, showing the real attack potential of D-Wave machines. The influence of different column widths on RSA factorization results is studied on the basis of a multiplication table, and the optimal column method is determined by traversal experiments. The traversal experiment of integer factorization within 10 000 shows that the local field and coupling coefficients are 75%–93% lower than the research of Shanghai University in 2020 and more than 85% lower than that of Purdue University in 2018. Extremely low Ising model parameters are crucial to reducing the hardware requirements, prompting factoring 1245407 on the D-Wave 2000Q real machine. D-Wave advantage already has more than 5000 qubits and will be expanded to 7000 qubits during 2023–2024, with remarkable improvements in decoherence and topology. This machine is expected to promote the solution of large-scale combinatorial optimization problems. One of the contributions of this paper is the discussion of the long-term impact of D-Wave on the development of post-quantum cryptography standards.
R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.
E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X. Q. Zhou, and J. L. O'Brien, Experimental realization of Shor’s quantum factoring algorithm using qubit recycling, Nat. Photonics, vol. 6, no. 11, pp. 773–776, 2012.
M. R. Geller and Z. Zhou, Factoring 51 and 85 with 8 qubits, Sci. Rep., vol. 3, p. 3023, 2013.
T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Realization of a scalable shor algorithm, Science, vol. 351, no. 6277, pp. 1068–1070, 2016.
D. Castelvecchi, Quantum computers ready to leap out of the lab in 2017, Nature, vol. 541, no. 7635, pp. 9–10, 2017.
M. Dyakonov, When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. Here’s why: The case against: Quantum computing, IEEE Spectr., vol. 56, no. 3, pp. 24–29, 2019.
C. Wang, H. Yao, B. Wang, F. Hu, H. Zhang, and X. Ji, Advances in cryptographic Attacks for quantum computing, (in Chinese), Chinese J. Comput., vol. 43, no. 9, pp. 1691–1707, 2020.
N. Chancellor, Fluctuation-guided search in quantum annealing, Phys. Rev. A, vol. 102, no. 6, p. 062606, 2020.
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, vol. 292, no. 5516, pp. 472–475, 2001.
X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Quantum adiabatic algorithm for factorization and its experimental implementation, Phys. Rev. Lett., vol. 101, no. 22, p. 220405, 2008.
G. Schaller and R. Schutzhold, The role of symmetries in adiabatic quantum algorithms, Quantum Inf. Comput., vol. 10, nos. 1&2, pp. 109–140, 2010.
N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du, Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system, Phys. Rev. Lett., vol. 108, no. 13, p. 130501, 2012.
S. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais, Quantum annealing for prime factorization, Sci. Rep., vol. 8, no. 1, p. 17667, 2018.
W. Peng, B. Wang, F. Hu, Y. Wang, X. Fang, X. Chen, and C. Wang, Factoring larger integers with fewer qubits via quantum annealing with optimized parameters, Sci. China Phys. Mech. Astron., vol. 62, no. 6, pp. 1–8, 2019.
C. Wang and H. G. Zhang, The impact of commercial quantum computer on cryptography, (in Chinese), Inf. Secur. Commun. Priv., vol. 2, pp. 31–32, 2012.
N. N. Hegade, K. Paul, F. Albarrán-Arriagada, X. Chen, and E. Solano, Digitized adiabatic quantum factorization, Phys. Rev. A, vol. 104, no. 5, p. L050403, 2021.
B. Wang, H. Yao, F. Hu, and C. Wang, Quantum annealing distributed integer decomposition study of local field coefficient h and coupling coefficient J with stability Ising model, Sci. Sin.-Phys. Mech. Astron., vol. 50, no. 3, p. 030301, 2020.
B. Wang, F. Hu, H. Yao, and C. Wang, Prime factorization algorithm based on parameter optimization of Ising model, Sci. Rep., vol. 10, no. 1, p. 7106, 2020.
C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, Quantum, vol. 5, p. 433, 2021.
É. Gouzien and N. Sangouard, Factoring 2048-bit RSA integers in 177 days with 13436 qubits and a multimode memory, Phys. Rev. Lett., vol. 127, no. 14, p. 140503, 2021.
F. X. Cui, B. Wang, Y. Liu, and Y. Li, Research status and prospect of quantum attack on public key cryptography, (in Chinese), Network Security and Data Governance, vol. 41, no. 3, pp. 3–12, 2022.
S. Muthukrishnan, T. Albash, and D. A. Lidar, Tunneling and speedup in quantum optimization for permutation-symmetric problems, Phys. Rev. X, vol. 6, no. 3, p. 031010, 2016.
D. A. Lidar, A. T. Rezakhani, and A. Hamma, Adiabatic approximation with exponential accuracy for many-body systems and quantum computation, J. Math. Phys., vol. 50, no. 10, p. 102106, 2009.
V. Choi, Minor-embedding in adiabatic quantum computation: I. The parameter setting problem, Quantum Inf. Process., vol. 7, no. 5, pp. 193–209, 2008.
W. L. Du, B. Li, and Y. Tian, Quantum annealing algorithms: State of the art, (in Chinese), J. Comput. Res. Dev., vol. 45, no. 9, pp. 1501–1508, 2008.
R. H. Warren, Factoring on a quantum annealing computer, Quantum Inf. Comput., vol. 19, nos. 3&4, pp. 252–261, 2019.
Y. Q. Chen, Y. Chen, C. K. Lee, S. Zhang, and C. Y. Hsieh, Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks, Nat. Mach. Intell., vol. 4, no. 3, pp. 269–278, 2022.
840
Views
211
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).