Unmanned Aerial Vehicles (UAVs) are enabled to be fast and flexible in managing traffic compared to the conventional methods. However, in emergencies, this system takes more time to identify and clear the traffic because of fixed time control. To overcome this problem, an automated intelligent traffic monitoring and controlling system is designed using YOLO V3 neural architecture and implemented to detect the emergency vehicles from video stream data from UAVs using deep Convolution Neural Network (CNN) along with re-routing algorithm to provide the safest alternate route from current position to destination, in a heavy traffic environment. The real-time visual data collected through UAV video cameras are trained using machine learning algorithms to produce statistical profiles that are used continuously as updated inputs to the existing traffic simulation models for improving predictions. The proposed automated system performs exemplary in recognizing emergency vehicles and diverting them to an alternate route for quick transportation in various scenarios.
T. Zhang, Y. Wang, Y. Liu, W. Xu, and A. Nallanathan, Cache-enabling UAV communications: Network deployment and resource allocation, IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7470–7483, 2020.
S. I. Ilnytska, F. Li, A. Grekhov, and V. Kondratiuk, Loss estimation for network-connected UAV/RPAS communications, IEEE Access, vol. 8, pp. 137702–137710, 2020.
Z. Ma, B. Ai, R. He, G. Wang, Y. Niu, M. Yang, J. Wang, Y. Li, and Z. Zhong, Impact of UAV rotation on MIMO channel characterization for air-to-ground communication systems, IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12418–12431, 2020.
Q. Zhang, W. Saad, M. Bennis, X. Lu, M. Debbah, and W. Zuo, Predictive deployment of UAV base stations in wireless networks: Machine learning meets contract theory, IEEE Trans. Wirel. Commun., vol. 20, no. 1, pp. 637–652, 2021.
T. Zhang, Z. Wang, Y. Liu, W. Xu, and A. Nallanathan, Caching placement and resource allocation for cache-enabling UAV NOMA networks, IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12897–12911, 2020.
E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, Wireless networks with cache-enabled and backhaul-limited aerial base stations, IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7363–7376, 2020.
S. Lhazmir, O. A. Oualhaj, A. Kobbane, and J. Ben-Othman, Matching game with no-regret learning for IoT energy-efficient associations with UAV, IEEE Trans. Green Commun. Netw., vol. 4, no. 4, pp. 973–981, 2020.
J. Ji, K. Zhu, D. Niyato, and R. Wang, Joint cache placement, flight trajectory, and transmission power optimization for multi-UAV assisted wireless networks, IEEE Trans. Wirel. Commun., vol. 19, no. 8, pp. 5389–5403, 2020.
N. Tafintsev, D. Moltchanov, S. Andreev, S. P. Yeh, N. Himayat, Y. Koucheryavy, and M. Valkama, Handling spontaneous traffic variations in 5g+ via offloading onto mmWave-Capable UAV “bridges”, IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10070–10084, 2020.
G. Hattab and D. Cabric, Energy-efficient massive IoT shared spectrum access over UAV-enabled cellular networks, IEEE Trans. Commun., vol. 68, no. 9, pp. 5633–5648, 2020.
C. Shen, T. H. Chang, J. Gong, Y. Zeng, and R. Zhang, Multi-UAV interference coordination via joint trajectory and power control, IEEE Trans. Signal Process., vol. 68, pp. 843–858, 2020.
A. Alipour-Fanid, M. Dabaghchian, N. Wang, P. Wang, L. Zhao, and K. Zeng, Machine learning-based delay-aware UAV detection and operation mode identification over encrypted WiFi traffic, IEEE Trans. Inform. Foren. Secur., vol. 15, pp. 2346–2360, 2020.
M. A. Hassan, A. R. Javed, T. Hassan, S. S. Band, R. Sitharthan, and M. Rizwan, Reinforcing communication on the internet of aerial vehicles, IEEE Trans. Green Commun. Netw., vol. 6, no. 3, pp. 1288–1297, 2022.
A. R. Javed, M. A. Hassan, F. Shahzad, W. Ahmed, S. Singh, T. Baker, and T. R. Gadekallu, Integration of blockchain technology and federated learning in vehicular (IoT) networks: A comprehensive survey, Sensors, vol. 22, no. 12, p. 4394, 2022.
M. F. Sohail, C. Y. Leow, and S. Won, Energy-efficient non-orthogonal multiple access for UAV communication system, IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 10834–10845, 2019.
Y. Sun, T. Wang, and S. Wang, Location optimization and user association for unmanned aerial vehicles assisted mobile networks, IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 10056–10065, 2019.
Z. Wang, L. Duan, and R. Zhang, Adaptive deployment for UAV-aided communication networks, IEEE Trans. Wirel. Commun., vol. 18, no. 9, pp. 4531–4543, 2019.
M. Chen, W. Saad, and C. Yin, Echo-liquid state deep learning for 360° content transmission and caching in wireless VR networks with cellular-connected UAVs, IEEE Trans. Commun., vol. 67, no. 9, pp. 6386–6400, 2019.
B. Galkin, J. Kibiłda, and L. A. DaSilva, A stochastic model for UAV networks positioned above demand hotspots in urban environments, IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6985–6996, 2019.
S. R. Pokhrel, J. Jin, and H. Le Vu, Mobility-aware multipath communication for unmanned aerial surveillance systems, IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6088–6098, 2019.
P. Li, A. A. Laghari, M. Rashid, J. Gao, T. R. Gadekallu, A. R. Javed, and S. Yin, A deep multimodal adversarial cycle-consistent network for smart enterprise system, IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 693–702, 2023.
A. M. Koushik, F. Hu, and S. Kumar, Deep Q-learning-based node positioning for throughput-optimal communications in dynamic UAV swarm network, IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 554–566, 2019.
N. Zhao, X. Pang, Z. Li, Y. Chen, F. Li, Z. Ding, and M. S. Alouini, Joint trajectory and precoding optimization for UAV-assisted NOMA networks, IEEE Trans. Commun., vol. 67, no. 5, pp. 3723–3735, 2019.
R. Ke, Z. Li, J. Tang, Z. Pan, and Y. Wang, Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 54–64, 2019.
F. Tang, Z. M. Fadlullah, B. Mao, N. Kato, F. Ono, and R. Miura, On a novel adaptive UAV-Mounted Cloudlet-Aided recommendation system for LBSNs, IEEE Trans. Emerg. Top. Comput., vol. 7, no. 4, pp. 565–577, 2019.
Q. Wu and R. Zhang, Common throughput maximization in UAV-Enabled OFDMA systems with delay consideration, IEEE Trans. Commun., vol. 66, no. 12, pp. 6614–6627, 2018.
K. Zhu and T. Zhang, Deep reinforcement learning based mobile robot navigation: A review, Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, 2021.
J. Li and Y. Han, A traffic service scheme for delay minimization in Multi-Layer UAV networks, IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5500–5504, 2018.
N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, and H. Sari, Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment, IEEE Trans. Commun., vol. 66, no. 5, pp. 2281–2294, 2018.
B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, Learning-based energy-efficient data collection by unmanned vehicles in smart cities, IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 1666–1676, 2018.
H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi, Efficient road detection and tracking for unmanned aerial vehicle, IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 297–309, 2015.
S. Akter, D. Y. Kim, and S. Yoon, Task offloading in multi-access edge computing enabled UAV-aided emergency response operations, IEEE Access, vol. 11, pp. 23167–23188, 2023.
D. Liu, F. Sun, W. Wang, and K. Dev, Distributed computation offloading with low latency for artificial intelligence in vehicular networking, IEEE Commun. Stand. Mag., vol. 7, no. 1, pp. 74–80, 2023.
S. A. Khowaja, P. Khuwaja, K. Dev, I. H. Lee, W. U. Khan, W. Wang, N. M. F. Qureshi, and M. Magarini, A secure data sharing scheme in community segmented vehicular social networks for 6G, IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 890–899, 2023.