AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Review of Privacy and Security of Edge Computing in Smart Healthcare Systems: Issues, Challenges, and Research Directions

Department of Computer Science, Jordan University of Science and Technology, Irbid 22110, Jordan
Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
Show Author Information

Abstract

The healthcare industry is rapidly adapting to new computing environments and technologies. With academics increasingly committed to developing and enhancing healthcare solutions that combine the Internet of Things (IoT) and edge computing, there is a greater need than ever to adequately monitor the data being acquired, shared, processed, and stored. The growth of cloud, IoT, and edge computing models presents severe data privacy concerns, especially in the healthcare sector. However, rigorous research to develop appropriate data privacy solutions in the healthcare sector is still lacking. This paper discusses the current state of privacy-preservation solutions in IoT and edge healthcare applications. It identifies the common strategies often used to include privacy by the intelligent edges and technologies in healthcare systems. Furthermore, the study addresses the technical complexity, efficacy, and sustainability limits of these methods. The study also highlights the privacy issues and current research directions that have driven the IoT and edge healthcare solutions, with which more insightful future applications are encouraged.

References

[1]
A. Singh and K. Chatterjee, Security and privacy issues of electronic healthcare system: A survey, J. Inform. Optim. Sci., vol. 40, no. 8, pp. 1709–1729, 2019.
[2]

R. Wang, J. Lai, Z. Zhang, X. Li, P. Vijayakumar, and M. Karuppiah, Privacy-preserving federated learning for internet of medical things under edge computing, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 854–865, 2023.

[3]

N. Fernando, S. W. Loke, and W. Rahayu, Mobile cloud computing: A survey, Future Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.

[4]
F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the internet of things, in Proc. first Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 2012, pp. 13–16.
[5]

K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing, J. Netw. Comput. Appl., vol. 59, pp. 46–54, 2016.

[6]

Y. Hao and R. Foster, Wireless body sensor networks for health-monitoring applications, Physiol. Meas., vol. 29, no. 11, pp. R27–R56, 2008.

[7]

K. Cao, Y. Liu, G. Meng, and Q. Sun, An overview on edge computing research, IEEE Access, vol. 8, pp. 85714–85728, 2020

[8]

A. Lakhan, M. A. Mohammed, A. N. Rashid, S. Kadry, K. H. Abdulkareem, J. Nedoma, R. Martinek, and I. Razzak, Restricted boltzmann machine assisted secure serverless edge system for internet of medical things, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 673–683, 2023.

[9]

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications, IEEE Internet Things J., vol. 4, no. 5, pp. 1125–1142, 2017.

[10]

A. Mosenia and N. K. Jha, A comprehensive study of security of internet-of-things, IEEE Trans. Emerg. Top. Comput., vol. 5, no. 4, pp. 586–602, 2017.

[11]

X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, and K. I. K. Wang, Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system, IEEE Internet Things J., vol. 9, no. 12, pp. 9310–9319, 2022.

[12]

A. Algarni, A survey and classification of security and privacy research in smart healthcare systems, IEEE Access, vol. 7, pp. 101879–101894, 2019.

[13]

J. J. Hathaliya and S. Tanwar, An exhaustive survey on security and privacy issues in Healthcare 4.0, Comput. Commun., vol. 153, pp. 311–335, 2020.

[14]

W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, Security and privacy in the medical internet of things: A review, Secur. Commun. Netw., vol. 2018, p. 5978636, 2018.

[15]

Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, Edge computing security: State of the art and challenges, Proc. IEEE, vol. 107, no. 8, pp. 1608–1631, 2019.

[16]
Statista—the statistics portal, https://www.statista.com/, 2023.
[17]

M. Yahuza, M. Y. I. B. Idris, A. W. B. A. Wahab, A. T. S. Ho, S. Khan, S. N. B. Musa, and A. Z. B. Taha, Systematic review on security and privacy requirements in edge computing: State of the art and future research opportunities, IEEE Access, vol. 8, pp. 76541–76567, 2020.

[18]

J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, Data security and privacy-preserving in edge computing paradigm: Survey and open issues, IEEE Access, vol. 6, pp. 18209–18237, 2018.

[19]

H. S. G. Pussewalage and V. A. Oleshchuk, Privacy preserving mechanisms for enforcing security and privacy requirements in E-health solutions, Int. J. Inf. Manage., vol. 36, no. 6, pp. 1161–1173, 2016.

[20]

R. Roman, J. Lopez, and M. Mambo, Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges, Future Gener. Comput. Syst., vol. 78, pp. 680–698, 2018.

[21]
Z. Huang, G. Xia, Z. Wang, and S. Yuan, Survey on edge computing security, in Proc. Int. Conf. Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 2020, pp. 96–105.
[22]

F. Y. Rao and E. Bertino, Privacy techniques for edge computing systems, Proc. IEEE, vol. 107, no. 8, pp. 1632–1654, 2019.

[23]

M. Hartmann, U. S. Hashmi, and A. Imran, Edge computing in smart health care systems: Review, challenges, and research directions, Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, p. e3710, 2022.

[24]

Q. Jiang, X. Zhou, R. Wang, W. Ding, Y. Chu, S. Tang, X. Jia, and X. Xu, Intelligent monitoring for infectious diseases with fuzzy systems and edge computing: A survey, Appl. Soft Comput., vol. 123, p. 108835, 2022.

[25]

A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, A survey of security in cloud, edge, and fog computing, Sensors, vol. 22, no. 3, p. 927, 2022.

[26]

M. D. A. Rahman, M. S. Hossain, G. Loukas, E. Hassanain, S. S. Rahman, M. F. Alhamid, and M. Guizani, Blockchain-based mobile edge computing framework for secure therapy applications, IEEE Access, vol. 6, pp. 72469–72478, 2018.

[27]

R. Kumar and R. Tripathi, Towards design and implementation of security and privacy framework for internet of medical things (IoMT) by leveraging blockchain and IPFS technology, J. Supercomput., vol. 77, no. 8, pp. 7916–7955, 2021.

[28]
G. Tripathi, M. Abdul Ahad, and S. Paiva, SMS: A secure healthcare model for smart cities, Electronics, vol. 9, no. 7, p. 1135, 2020.
[29]

R. Saha, G. Kumar, M. K. Rai, R. Thomas, and S. J. Lim, Privacy ensured e-healthcare for fog-enhanced IoT based applications, IEEE Access, vol. 7, pp. 44536–44543, 2019.

[30]

W. Wang, H. Huang, L. Xue, Q. Li, R. Malekian, and Y. Zhang, Blockchain-assisted handover authentication for intelligent telehealth in multi-server edge computing environment, J. Syst. Architect., vol. 115, p. 102024, 2021.

[31]

S. A. ElRahman and A. S. Alluhaidan, Blockchain technology and IoT-edge framework for sharing healthcare services, Soft Comput., vol. 25, no. 21, pp. 13753–13777, 2021.

[32]
T. Hewa, A. Braeken, M. Ylianttila, and M. Liyanage, Multi-access edge computing and blockchain-based secure telehealth system connected with 5G and IoT, in Proc. GLOBECOM 2020–2020 IEEE Global Communications Conf., Taipei, China, 2020, pp. 1–6.
[33]
E. M. Abou-Nassar, A. M. Iliyasu, P. M. El-Kafrawy, O. Y. Song, A. K. Bashir, and A. A. A. El-Latif, DITrust chain: Towards blockchain-based trust models for sustainable healthcare IoT systems, IEEE Access, vol. 8, pp. 111223–111238, 2020.
[34]

J. Li, J. Cai, F. Khan, A. U. Rehman, V. Balasubramaniam, J. Sun, and P. Venu, A secured framework for SDN-based edge computing in IoT-enabled healthcare system, IEEE Access, vol. 8, pp. 135479–135490, 2020.

[35]
A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, MedRec: Using blockchain for medical data access and permission management, in Proc. 2016 2 nd Int. Conf. Open and Big Data (OBD), Vienna, Austria, 2016, pp. 25–30.
[36]

M. S. Christo, V. E. Jesi, U. Priyadarsini, V. Anbarasu, H. Venugopal, and M. Karuppiah, Ensuring improved security in medical data using ECC and blockchain technology with edge devices, Secur. Commun. Netw., vol. 2021, p. 6966206, 2021.

[37]

X. Li, X. Huang, C. Li, R. Yu, and L. Shu, EdgeCare: Leveraging edge computing for collaborative data management in mobile healthcare systems, IEEE Access, vol. 7, pp. 22011–22025, 2019.

[38]
H. Guo, W. Li, E. Meamari, C. C. Shen, and M. Nejad, Attribute-based multi-signature and encryption for EHR management: A blockchain-based solution, in Proc. IEEE Int. Conf. Blockchain and Cryptocurrency (ICBC), Toronto, Canada, 2020, pp. 1–5.
[39]
B. S. Egala, S. Priyanka, and A. K. Pradhan, SHPI: Smart healthcare system for patients in ICU using IoT, in Proc. IEEE Int. Conf. Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 2019, pp. 1–6.
[40]
A. Al Omar, A. K. Jamil, M. S. H. Nur, M. M. Hasan, R. Bosri, M. Z. A. Bhuiyan, and M. S. Rahman, Towards a transparent and privacy-preserving healthcare platform with blockchain for smart cities, presented at the 2020 IEEE 19th Int. Conf. Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020, pp. 1291–1296.
[41]

M. A. Jan, F. Khan, R. Khan, S. Mastorakis, V. G. Menon, M. Alazab, and P. Watters, Lightweight mutual authentication and privacy-preservation scheme for intelligent wearable devices in industrial-CPS, IEEE Trans. Ind. Inform., vol. 17, no. 8, pp. 5829–5839, 2021.

[42]
A. Islam and S. Y. Shin, BHMUS: Blockchain based secure outdoor health monitoring scheme using UAV in smart city, in Proc. 7 th Int. Conf. Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia, 2019, pp. 1–6.
[43]

R. Guo, H. Shi, Q. Zhao, and D. Zheng, Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems, IEEE Access, vol. 6, pp. 11676–11686, 2018.

[44]

J. A. Alzubi, Blockchain-based Lamport Merkle digital signature: Authentication tool in IoT healthcare, Comput. Commun., vol. 170, pp. 200–208, 2021.

[45]

Z. Ma, J. Ma, Y. Miao, X. Liu, K. K. R. Choo, R. Yang, and X. Wang, Lightweight privacy-preserving medical diagnosis in edge computing, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1606–1618, 2022.

[46]

P. K. Vadrevu, S. K. Adusumalli, and V. K. Mangalapalli, Personal privacy preserving data publication of COVID-19 pandemic data using edge computing, J. Crit. Rev., vol. 7, no. 19, pp. 8103–8111, 2020.

[47]
Y. Guo, F. Liu, Z. Cai, L. Chen, and N. Xiao, FEEL: A federated edge learning system for efficient and privacy-preserving mobile healthcare, in Proc. 49 th Int. Conf. Parallel Processing, Edmonton, Canada, 2020, p. 9.
[48]

A. Alabdulatif, I. Khalil, X. Yi, and M. Guizani, Secure edge of things for smart healthcare surveillance framework, IEEE Access, vol. 7, p. 31010–31021, 2019.

[49]
R. Bosri, A. R. Uzzal, A. Al Omar, M. Z. A. Bhuiyan, and M. S. Rahman, HIDEchain: A user-centric secure edge computing architecture for healthcare IoT devices, in Proc. IEEE INFOCOM 2020-IEEE Conf. Computer Communications Workshops, Toronto, Canada, 2020, pp. 376–381.
[50]

F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.

[51]

X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, Deep-learning-enhanced multitarget detection for end-edge-cloud surveillance in smart IoT, IEEE Internet Things J., vol. 8, no. 16, pp. 12588–12596, 2021.

[52]
L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, F.-F. Li, and D. Rubin, Rethinking architecture design for tackling data heterogeneity in federated learning, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022, pp. 10051–10061.
[53]

X. Zhou, X. Yang, J. Ma, and K. I. K. Wang, Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT, IEEE Internet Things J., vol. 9, no. 16, pp. 14988–14997, 2022.

[54]

I. A. Elgendy, A. Muthanna, M. Hammoudeh, H. Shaiba, D. Unal, and M. Khayyat, Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing, Big Data, vol. 9, no. 4, pp. 265–278, 2021.

[55]

M. Hammoudeh, G. Epiphaniou, S. Belguith, D. Unal, B. Adebisi, T. Baker, A. S. M. Kayes, and P. Watters, A service-oriented approach for sensing in the Internet of Things: Intelligent transportation systems and privacy use cases, IEEE Sens. J., vol. 21, no. 14, pp. 15753–15761, 2021.

[56]

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, The case for VM-based cloudlets in mobile computing, IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23, 2009.

[57]

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, Edge computing: Vision and challenges, IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016.

[58]

S. Wang, Edge computing: Applications, state-of-the-art and challenges, Adv. Netw., vol. 7, no. 1, pp. 8–15, 2019.

[59]
S. B. Calo, M. Touna, D. C. Verma, and A. Cullen, Edge computing architecture for applying AI to IoT, in Proc. IEEE Int. Conf. Big Data (Big Data), Boston, MA, USA, 2017, pp. 3012–3016.
[60]
B. R. Behera and P. Suraj, Rectangular microstrip patch antenna for wireless fidelity application: Design of a Wi-Fi antenna using the concept of metamaterials, in Proc. IEEE Int. Conf. Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2016, pp. 1933–1937.
[61]

C. Bisdikian, An overview of the Bluetooth wireless technology, IEEE Commun. Mag., vol. 39, no. 12, pp. 86–94, 2001.

[62]
S. Safaric and K. Malaric, ZigBee wireless standard, in Proc. ELMAR 2006, Zadar, Croatia, 2006, pp. 259–262.
[63]

V. Coskun, B. Ozdenizci, and K. Ok, A survey on near field communication (NFC) technology, Wirel. Pers. Commun., vol. 71, no. 3, pp. 2259–2294, 2013.

[64]
B. Panchali, Edge computing-background and overview, in Proc. Int. Conf. Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2018, pp. 580–582.
[65]

H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, C. T. Lin, Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment, IEEE Access, vol. 6, pp. 1706–1717, 2018.

[66]
OpenFog Consortium Architecture Working Group, OpenFog architecture overview, White Paper, https://site.ieee.org/denver-com/files/2017/06/OpenFog-Architecture-Overview-WP-2-2016.pdf, 2016.
[67]
K. Dolui and S. K. Datta, Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing, in Proc. Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 2017, pp. 1–6.
[68]

X. Masip-Bruin, E. Marin-Tordera, A. Jukan, and G. J. Ren, Managing resources continuity from the edge to the cloud: Architecture and performance, Future Gener. Comput. Syst., vol. 79, pp. 777–785, 2018.

[69]

M. De Donno, K. Tange, and N. Dragoni, Foundations and evolution of modern computing paradigms: Cloud, IoT, edge, and fog, IEEE Access, vol. 7, pp. 150936–150948, 2019.

[70]
T. A. A. Alsbouí, M. Hammoudeh, Z. Bandar, and A. Nisbet, An overview and classification of approaches to information extraction in wireless sensor networks, in Proc. 5 th Int. Conf. Sensor Technologies and Applications & 1 st Int. Workshop on Sensor Networks for Supply Chain Management, Nice/Saint Laurent du Var, France, 2011, pp. 255–260.
[71]

M. Hammoudeh, R. Newman, C. Dennett, S. Mount, and O. Aldabbas, Map as a service: A framework for visualising and maximising information return from multi-modal wireless sensor networks, Sensors, vol. 15, no. 9, pp. 22970–23003, 2015.

[72]

W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, Edge computing: A survey, Future Gener. Comput. Syst., vol. 97, pp. 219–235, 2019.

[73]

A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, Fog computing for the internet of things: Security and privacy issues, IEEE Internet Comput., vol. 21, no. 2, pp. 34–42, 2017.

[74]

M. B. Mollah, M. A. K. Azad, and A. Vasilakos, Security and privacy challenges in mobile cloud computing: Survey and way ahead, J. Netw. Comput. Appl., vol. 84, pp. 38–54, 2017.

[75]

T. Bhatia and A. K. Verma, Data security in mobile cloud computing paradigm: A survey, taxonomy and open research issues, J. Supercomput., vol. 73, no. 6, pp. 2558–2631, 2017.

[76]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[77]

S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, An efficient file hierarchy attribute-based encryption scheme in cloud computing, IEEE Trans. Inform. Forensics Secur., vol. 11, no. 6, pp. 1265–1277, 2016.

[78]
S. Moffat, M. Hammoudeh, and R. Hegarty, A survey on ciphertext-policy attribute-based encryption (CP-ABE) approaches to data security on mobile devices and its application to IoT, in Proc. Int. Conf. Future Networks and Distributed Systems, Cambridge, UK, 2017, p. 34.
[79]

S. Belguith, N. Kaaniche, and M. Hammoudeh, Analysis of attribute-based cryptographic techniques and their application to protect cloud services, Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, p. e3667, 2022.

[80]

K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, Y. Yu, and A. Yang, A secure and efficient ciphertext-policy attribute-based proxy re-encryption for cloud data sharing, Future Gener. Comput. Syst., vol. 52, pp. 95–108, 2015.

[81]
M. R. Baharon, Q. Shi, and D. Llewellyn-Jones, A new lightweight homomorphic encryption scheme for mobile cloud computing, in Proc. IEEE Int. Conf. Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 2015, pp. 618–625.
[82]

D. Eckhoff and I. Wagner, Privacy in the smart city—applications, technologies, challenges, and solutions, IEEE Commun. Surv. Tutor., vol. 20, no. 1, pp. 489–516, 2018.

[83]

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, Enabling public auditability and data dynamics for storage security in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, 2011.

[84]

K. Yang and X. Jia, An efficient and secure dynamic auditing protocol for data storage in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1717–1726, 2013.

[85]

C. Lin, Z. Shen, Q. Chen, and F. T. Sheldon, A data integrity verification scheme in mobile cloud computing, J. Netw. Comput. Appl., vol. 77, pp. 146–151, 2017.

[86]

D. S. Touceda, J. M. S. Cámara, S. Zeadally, and M. Soriano, Attribute-based authorization for structured Peer-to-Peer (P2P) networks, Comput. Stand. Interfaces, vol. 42, pp. 71–83, 2015.

[87]

H. Liu, H. Ning, Q. Xiong, and L. T. Yang, Shared authority based privacy-preserving authentication protocol in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 241–251, 2015.

[88]

X. Yang, X. Huang, and J. K. Liu, Efficient handover authentication with user anonymity and untraceability for mobile cloud computing, Future Gener. Comput. Syst., vol. 62, pp. 190–195, 2016.

[89]
M. Bahrami and M. Singhal, A light-weight permutation based method for data privacy in mobile cloud computing, in Proc. 3 rd IEEE Int. Conf. Mobile Cloud Computing, Services, and Engineering, San Francisco, CA, USA, 2015, pp. 189–198.
[90]

S. K. Pasupuleti, S. Ramalingam, and R. Buyya, An efficient and secure privacy-preserving approach for outsourced data of resource constrained mobile devices in cloud computing, J. Netw. Comput. Appl., vol. 64, pp. 12–22, 2016.

[91]
I. S. Park, Y. D. Lee, and J. Jeong, Improved identity management protocol for secure mobile cloud computing, in Proc. 46 th Hawaii Int. Conf. System Sciences, Wailea, HI, USA, 2013, pp. 4958–4965.
[92]

I. Khalil, A. Khreishah, and M. Azeem, Consolidated Identity Management System for secure mobile cloud computing, Comput. Netw., vol. 65, pp. 99–110, 2014.

[93]
M. Chen, W. Li, Z. Li, S. Lu, and D. Chen, Preserving location privacy based on distributed cache pushing, in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014, pp. 3456–3461.
[94]
B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, Enhancing privacy through caching in location-based services, in Proc. IEEE Conf. Computer Communications (INFOCOM), Hong Kong, China, 2015, pp. 1017–1025.
[95]

N. H. Hassan and Z. Ismail, A conceptual model for investigating factors influencing information security culture in healthcare environment, Procedia Soc. Behav. Sci., vol. 65, pp. 1007–1012, 2012.

[96]

D. Box and D. Pottas, Improving information security behaviour in the healthcare context, Procedia Technol., vol. 9, pp. 1093–1103, 2013.

[97]

P. Kumar and H. J. Lee, Security issues in healthcare applications using wireless medical sensor networks: A survey, Sensors, vol. 12, no. 1, pp. 55–91, 2011.

[98]
D. Kotz, A threat taxonomy for mHealth privacy, in Proc. Third Int. Conf. Communication Systems and Networks (COMSNETS 2011), Bangalore, India, 2011, pp. 1–6.
[99]

I. Butun, N. Pereira, and M. Gidlund, Security risk analysis of LoRaWAN and future directions, Future Internet, vol. 11, no. 1, p. 3, 2018.

[100]

A. Singh and K. Chatterjee, Securing smart healthcare system with edge computing, Comput. Secur., vol. 108, p. 102353, 2021.

[101]

L. Qi, Y. Yang, X. Zhou, W. Rafique and J. Ma, Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp. 6503–6511, 2022.

[102]

X. Zhou, Y. Hu, J. Wu, W. Liang, J. Ma, and Q. Jin, Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT, IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 570–580, 2023.

[103]
T. Javid, M. Faris, H. Beenish, and M. Fahad, Cybersecurity and data privacy in the cloudlet for preliminary healthcare big data analytics, in Proc. Int. Conf. Computing and Information Technology, Tabuk, Saudi Arabia, 2020, pp. 1–4.
[104]

P. Chaudhari and M. L. Das, Privacy preserving searchable encryption with fine-grained access control, IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 753–762, 2021.

[105]
T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 785-794.
[106]

L. Minder and A. Sinclair, The extended k-tree algorithm, J. Cryptol., vol. 25, no. 2, pp. 349–382, 2012.

[107]
L. Sweeney, k-anonymity: A model for protecting privacy, Int. J. Unc. Fuzz. Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570, 2002.
[108]
A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, L-diversity: Privacy beyond k-anonymity, ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, p. 3–es, 2007.
[109]
C. Dwork, Differential privacy: A survey of results, in Proc. 5 th Int. Conf. Theory and Applications of Models of Computation, Xi’an, China, 2008, pp. 1–19.
[110]
S. Vishnu, S. R. J. Ramson, and R. Jegan, Internet of medical things (IoMT)-An overview, in Proc. 5 th Int. Conf. Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2020, pp. 101–104.
[111]
M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, Blockchain-based, decentralized access control for IPFS, in Proc. IEEE Int. Conf. Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018, pp. 1499–1506.
[112]

R. C. Wasserman, Electronic medical records (EMRs), epidemiology, and epistemology: Reflections on EMRs and future pediatric clinical research, Acad. Pediatr., vol. 11, no. 4, pp. 280–287, 2011.

[113]

M. S. Hossain, G. Muhammad, and N. Guizani, Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics, IEEE Netw., vol. 34, no. 4, pp. 126–132, 2020.

[114]
ResNet-50 convolutional neural network-MATLAB resnet50-mathworks.com, https://www.mathworks.com/help/deeplearning/ref/resnet50.html, 2023.
[115]
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2818–2826.
[116]

T. T. Huong, T. P. Bac, D. M. Long, B. D. Thang, N. T. Binh, T. D. Luong and T. K. Phuc, Lockedge: Low-complexity cyberattack detection in IoT edge computing, IEEE Access, vol. 9, pp. 29696–29710, 2021.

[117]
D. Kim, J. Mun, Y. Park, J. Choi, and J. Choi, Planning system architecture of fat-client management for customized healthcare services in edge computing environment, in Proc. 2020 5 th Int. Conf. Intelligent Information Technology, Hanoi, Vietnam, 2020, pp. 91–96.
[118]

M. Mistry, Softwarization of the infrastructure of Internet of Things for secure and smart healthcare, Ann. Rom. Soc. Cell Biol., vol. 25, no. 6, pp. 6680–6701, 2021.

[119]
D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, Blockchain and edge computing for decentralized EMRs sharing in federated healthcare, in Proc GLOBECOM IEEE Global Communications Conf., Taipei, China, 2020, pp. 1–6.
[120]
M. Campagna, SEC 4: Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV), Standards for Efficient Cryptography, https://www.secg.org/sec4-1.0.pdf, 2013.
[121]
H. Guo, W. Li, M. Nejad, and C. C. Shen, Access control for electronic health records with hybrid blockchain-edge architecture, in Proc. IEEE Int. Conf. Blockchain (Blockchain), Atlanta, GA, USA, 2019, pp. 44–51.
[122]
J. Fan and F. Vercauteren, Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, https://eprint.iacr.org/2012/144, 2012.
[123]
A. Frank, UCI machine learning repository, http://archive.ics.uci.edu/ml, 2010.
[124]
D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography. New York, NY, USA: Springer, 2004.
[125]

M. A. Jan, W. Zhang, M. Usman, Z. Tan, F. Khan, and E. Luo, SmartEdge: An end-to-end encryption framework for an edge-enabled smart city application, J. Netw. Comput. Appl., vol. 137, pp. 1–10, 2019.

[126]

S. R. Eddy, Hidden Markov models, Curr. Opin. Struct. Biol., vol. 6, no. 3, pp. 361–365, 1996.

[127]
X. Liu, J. Ma, Q. Li, J. Xiong, and F. Huang, Attribute based multi-signature scheme in the standard model, in Proc. Ninth Int. Conf. Computational Intelligence and Security, Emeishan, China, 2013, pp. 738–742.
[128]

D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, BEdgeHealth: A decentralized architecture for edge-based IoMT networks using blockchain, IEEE Internet Things J., vol. 8, no. 14, pp. 11743–11757, 2021.

[129]

K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi, S. Benrernou, I. Brandic, A. Kertész, M. Parkin, and M. Carro, A survey on service quality description, ACM Comput. Surv., vol. 46, no. 1, p. 1, 2013.

[130]
R. Baskar, R. Dhanagopal, K. Elangovan, and K. Gunasekaran, VLSI based architecture in ECG monitoring for adaptive power management in wireless bio signal acquisition network, Journal of Physics : Conference Series, vol. 1964, no. 6, p. 062090, 2021.
[131]

Q. Yang, Q. Liu, and H. Lv, A decentralized system for medical data management via blockchain, J. Internet Technol., vol. 21, no. 5, pp. 1335–1345, 2020.

[132]

Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, MeDShare: Trust-less medical data sharing among cloud service providers via blockchain, IEEE Access, vol. 5, pp. 14757–14767, 2017.

[133]

B. D. Deebak, F. Al-Turjman, and L. Mostarda, Seamless secure anonymous authentication for cloud-based mobile edge computing, Comput. Electr. Eng., vol. 87, p. 106782, 2020.

[134]

Z. Ali, M. S. Hossain, G. Muhammad, I. Ullah, H. Abachi, and A. Alamri, Edge-centric multimodal authentication system using encrypted biometric templates, Future Gener. Comput. Syst., vol. 85, pp. 76–87, 2018.

[135]

L. Witt, M. Heyer, K. Toyoda, W. Samek, and D. Li, Decentral and incentivized federated learning frameworks: A systematic literature review, IEEE Internet Things J., vol. 10, no. 4, pp. 3642–3663, 2023.

[136]
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in Proc. 20 th Int. Conf. Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 2017, pp. 1273–1282.
[137]

M. Ali, F. Naeem, M. Tariq, and G. Kaddoum, Federated learning for privacy preservation in smart healthcare systems: A comprehensive survey, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 778–789, 2023.

[138]

K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown, A. Beers, B. Rosen, D. L. Rubin, and J. Kalpathy-Cramer, Distributed deep learning networks among institutions for medical imaging, J. Am. Med. Inform. Assoc., vol. 25, no. 8, pp. 945–954, 2018.

[139]
M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, and R. Raskar, Split learning for collaborative deep learning in healthcare, arXiv preprint arXiv: 1912.12115, 2019.
[140]
Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, The secret revealer: Generative model-inversion attacks against deep neural networks, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 250–258.
[141]
R. Tomsett, K. Chan, and S. Chakraborty, Model poisoning attacks against distributed machine learning systems, in Proc. Volume 11006, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MD, USA, 2019, pp. 481–489.
[142]
M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, Deep learning with differential privacy, in Proc. 2016 ACM SIGSAC Conf. Computer and Communications Security, Vienna, Austria, 2016, pp. 308–318.
[143]

Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, FedHealth: A federated transfer learning framework for wearable healthcare, IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, 2020.

[144]

G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, Edge computing: Current trends, research challenges and future directions, Computing, vol. 103, no. 5, pp. 993–1023, 2021.

[145]
R. Dave, N. Seliya, and N. Siddiqui, The benefits of edge computing in healthcare, smart cities, and IoT, arXiv preprint arXiv: 2112.01250, 2021.
[146]

A. Pekar, J. Mocnej, W. K. G. Seah, and I. Zolotova, Application domain-based overview of IoT network traffic characteristics, ACM Comput. Surv., vol. 53, no. 4, p. 87, 2020.

[147]
M. Fredrikson, S. Jha, and T. Ristenpart, Model inversion attacks that exploit confidence information and basic countermeasures, in Proc. 22 nd ACM SIGSAC Conf. Computer and Communications Security, Denver, CO, USA, 2015, pp. 1322–1333.
[148]
L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R. Khosravi, R. Wang, and L. Qi, Time-aware missing healthcare data prediction based on ARIMA model, IEEE/ACM Trans. Comput. Biol. Bioinform.
[149]
J. Saleem, B. Adebisi, R. Ande, and M. Hammoudeh, A state of the art survey-Impact of cyber attacks on SME’s, in Proc. Int. Conf. Future Networks and Distributed Systems, Cambridge, UK, 2017, p. 52.
[150]

S. Khanagha, S. Ansari, S. Paroutis, and L. Oviedo, Mutualism and the dynamics of new platform creation: A study of Cisco and fog computing, Strateg. Manag. J., vol. 43, no. 3, pp. 476–506, 2022.

Tsinghua Science and Technology
Pages 1152-1180
Cite this article:
Alzu’bi A, Alomar A, Alkhaza’leh S, et al. A Review of Privacy and Security of Edge Computing in Smart Healthcare Systems: Issues, Challenges, and Research Directions. Tsinghua Science and Technology, 2024, 29(4): 1152-1180. https://doi.org/10.26599/TST.2023.9010080

2154

Views

439

Downloads

6

Crossref

3

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 30 May 2023
Revised: 30 June 2023
Accepted: 27 July 2023
Published: 09 February 2024
© The Author(s) 2024.

The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return