Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The healthcare industry is rapidly adapting to new computing environments and technologies. With academics increasingly committed to developing and enhancing healthcare solutions that combine the Internet of Things (IoT) and edge computing, there is a greater need than ever to adequately monitor the data being acquired, shared, processed, and stored. The growth of cloud, IoT, and edge computing models presents severe data privacy concerns, especially in the healthcare sector. However, rigorous research to develop appropriate data privacy solutions in the healthcare sector is still lacking. This paper discusses the current state of privacy-preservation solutions in IoT and edge healthcare applications. It identifies the common strategies often used to include privacy by the intelligent edges and technologies in healthcare systems. Furthermore, the study addresses the technical complexity, efficacy, and sustainability limits of these methods. The study also highlights the privacy issues and current research directions that have driven the IoT and edge healthcare solutions, with which more insightful future applications are encouraged.
R. Wang, J. Lai, Z. Zhang, X. Li, P. Vijayakumar, and M. Karuppiah, Privacy-preserving federated learning for internet of medical things under edge computing, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 854–865, 2023.
N. Fernando, S. W. Loke, and W. Rahayu, Mobile cloud computing: A survey, Future Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.
K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing, J. Netw. Comput. Appl., vol. 59, pp. 46–54, 2016.
Y. Hao and R. Foster, Wireless body sensor networks for health-monitoring applications, Physiol. Meas., vol. 29, no. 11, pp. R27–R56, 2008.
K. Cao, Y. Liu, G. Meng, and Q. Sun, An overview on edge computing research, IEEE Access, vol. 8, pp. 85714–85728, 2020
A. Lakhan, M. A. Mohammed, A. N. Rashid, S. Kadry, K. H. Abdulkareem, J. Nedoma, R. Martinek, and I. Razzak, Restricted boltzmann machine assisted secure serverless edge system for internet of medical things, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 673–683, 2023.
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications, IEEE Internet Things J., vol. 4, no. 5, pp. 1125–1142, 2017.
A. Mosenia and N. K. Jha, A comprehensive study of security of internet-of-things, IEEE Trans. Emerg. Top. Comput., vol. 5, no. 4, pp. 586–602, 2017.
X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, and K. I. K. Wang, Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system, IEEE Internet Things J., vol. 9, no. 12, pp. 9310–9319, 2022.
A. Algarni, A survey and classification of security and privacy research in smart healthcare systems, IEEE Access, vol. 7, pp. 101879–101894, 2019.
J. J. Hathaliya and S. Tanwar, An exhaustive survey on security and privacy issues in Healthcare 4.0, Comput. Commun., vol. 153, pp. 311–335, 2020.
W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, Security and privacy in the medical internet of things: A review, Secur. Commun. Netw., vol. 2018, p. 5978636, 2018.
Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, Edge computing security: State of the art and challenges, Proc. IEEE, vol. 107, no. 8, pp. 1608–1631, 2019.
M. Yahuza, M. Y. I. B. Idris, A. W. B. A. Wahab, A. T. S. Ho, S. Khan, S. N. B. Musa, and A. Z. B. Taha, Systematic review on security and privacy requirements in edge computing: State of the art and future research opportunities, IEEE Access, vol. 8, pp. 76541–76567, 2020.
J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, Data security and privacy-preserving in edge computing paradigm: Survey and open issues, IEEE Access, vol. 6, pp. 18209–18237, 2018.
H. S. G. Pussewalage and V. A. Oleshchuk, Privacy preserving mechanisms for enforcing security and privacy requirements in E-health solutions, Int. J. Inf. Manage., vol. 36, no. 6, pp. 1161–1173, 2016.
R. Roman, J. Lopez, and M. Mambo, Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges, Future Gener. Comput. Syst., vol. 78, pp. 680–698, 2018.
F. Y. Rao and E. Bertino, Privacy techniques for edge computing systems, Proc. IEEE, vol. 107, no. 8, pp. 1632–1654, 2019.
M. Hartmann, U. S. Hashmi, and A. Imran, Edge computing in smart health care systems: Review, challenges, and research directions, Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, p. e3710, 2022.
Q. Jiang, X. Zhou, R. Wang, W. Ding, Y. Chu, S. Tang, X. Jia, and X. Xu, Intelligent monitoring for infectious diseases with fuzzy systems and edge computing: A survey, Appl. Soft Comput., vol. 123, p. 108835, 2022.
A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, A survey of security in cloud, edge, and fog computing, Sensors, vol. 22, no. 3, p. 927, 2022.
M. D. A. Rahman, M. S. Hossain, G. Loukas, E. Hassanain, S. S. Rahman, M. F. Alhamid, and M. Guizani, Blockchain-based mobile edge computing framework for secure therapy applications, IEEE Access, vol. 6, pp. 72469–72478, 2018.
R. Kumar and R. Tripathi, Towards design and implementation of security and privacy framework for internet of medical things (IoMT) by leveraging blockchain and IPFS technology, J. Supercomput., vol. 77, no. 8, pp. 7916–7955, 2021.
R. Saha, G. Kumar, M. K. Rai, R. Thomas, and S. J. Lim, Privacy ensured e-healthcare for fog-enhanced IoT based applications, IEEE Access, vol. 7, pp. 44536–44543, 2019.
W. Wang, H. Huang, L. Xue, Q. Li, R. Malekian, and Y. Zhang, Blockchain-assisted handover authentication for intelligent telehealth in multi-server edge computing environment, J. Syst. Architect., vol. 115, p. 102024, 2021.
S. A. ElRahman and A. S. Alluhaidan, Blockchain technology and IoT-edge framework for sharing healthcare services, Soft Comput., vol. 25, no. 21, pp. 13753–13777, 2021.
J. Li, J. Cai, F. Khan, A. U. Rehman, V. Balasubramaniam, J. Sun, and P. Venu, A secured framework for SDN-based edge computing in IoT-enabled healthcare system, IEEE Access, vol. 8, pp. 135479–135490, 2020.
M. S. Christo, V. E. Jesi, U. Priyadarsini, V. Anbarasu, H. Venugopal, and M. Karuppiah, Ensuring improved security in medical data using ECC and blockchain technology with edge devices, Secur. Commun. Netw., vol. 2021, p. 6966206, 2021.
X. Li, X. Huang, C. Li, R. Yu, and L. Shu, EdgeCare: Leveraging edge computing for collaborative data management in mobile healthcare systems, IEEE Access, vol. 7, pp. 22011–22025, 2019.
M. A. Jan, F. Khan, R. Khan, S. Mastorakis, V. G. Menon, M. Alazab, and P. Watters, Lightweight mutual authentication and privacy-preservation scheme for intelligent wearable devices in industrial-CPS, IEEE Trans. Ind. Inform., vol. 17, no. 8, pp. 5829–5839, 2021.
R. Guo, H. Shi, Q. Zhao, and D. Zheng, Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems, IEEE Access, vol. 6, pp. 11676–11686, 2018.
J. A. Alzubi, Blockchain-based Lamport Merkle digital signature: Authentication tool in IoT healthcare, Comput. Commun., vol. 170, pp. 200–208, 2021.
Z. Ma, J. Ma, Y. Miao, X. Liu, K. K. R. Choo, R. Yang, and X. Wang, Lightweight privacy-preserving medical diagnosis in edge computing, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1606–1618, 2022.
P. K. Vadrevu, S. K. Adusumalli, and V. K. Mangalapalli, Personal privacy preserving data publication of COVID-19 pandemic data using edge computing, J. Crit. Rev., vol. 7, no. 19, pp. 8103–8111, 2020.
A. Alabdulatif, I. Khalil, X. Yi, and M. Guizani, Secure edge of things for smart healthcare surveillance framework, IEEE Access, vol. 7, p. 31010–31021, 2019.
F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.
X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, Deep-learning-enhanced multitarget detection for end-edge-cloud surveillance in smart IoT, IEEE Internet Things J., vol. 8, no. 16, pp. 12588–12596, 2021.
X. Zhou, X. Yang, J. Ma, and K. I. K. Wang, Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT, IEEE Internet Things J., vol. 9, no. 16, pp. 14988–14997, 2022.
I. A. Elgendy, A. Muthanna, M. Hammoudeh, H. Shaiba, D. Unal, and M. Khayyat, Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing, Big Data, vol. 9, no. 4, pp. 265–278, 2021.
M. Hammoudeh, G. Epiphaniou, S. Belguith, D. Unal, B. Adebisi, T. Baker, A. S. M. Kayes, and P. Watters, A service-oriented approach for sensing in the Internet of Things: Intelligent transportation systems and privacy use cases, IEEE Sens. J., vol. 21, no. 14, pp. 15753–15761, 2021.
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, The case for VM-based cloudlets in mobile computing, IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23, 2009.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, Edge computing: Vision and challenges, IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016.
S. Wang, Edge computing: Applications, state-of-the-art and challenges, Adv. Netw., vol. 7, no. 1, pp. 8–15, 2019.
C. Bisdikian, An overview of the Bluetooth wireless technology, IEEE Commun. Mag., vol. 39, no. 12, pp. 86–94, 2001.
V. Coskun, B. Ozdenizci, and K. Ok, A survey on near field communication (NFC) technology, Wirel. Pers. Commun., vol. 71, no. 3, pp. 2259–2294, 2013.
H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, C. T. Lin, Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment, IEEE Access, vol. 6, pp. 1706–1717, 2018.
X. Masip-Bruin, E. Marin-Tordera, A. Jukan, and G. J. Ren, Managing resources continuity from the edge to the cloud: Architecture and performance, Future Gener. Comput. Syst., vol. 79, pp. 777–785, 2018.
M. De Donno, K. Tange, and N. Dragoni, Foundations and evolution of modern computing paradigms: Cloud, IoT, edge, and fog, IEEE Access, vol. 7, pp. 150936–150948, 2019.
M. Hammoudeh, R. Newman, C. Dennett, S. Mount, and O. Aldabbas, Map as a service: A framework for visualising and maximising information return from multi-modal wireless sensor networks, Sensors, vol. 15, no. 9, pp. 22970–23003, 2015.
W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, Edge computing: A survey, Future Gener. Comput. Syst., vol. 97, pp. 219–235, 2019.
A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, Fog computing for the internet of things: Security and privacy issues, IEEE Internet Comput., vol. 21, no. 2, pp. 34–42, 2017.
M. B. Mollah, M. A. K. Azad, and A. Vasilakos, Security and privacy challenges in mobile cloud computing: Survey and way ahead, J. Netw. Comput. Appl., vol. 84, pp. 38–54, 2017.
T. Bhatia and A. K. Verma, Data security in mobile cloud computing paradigm: A survey, taxonomy and open research issues, J. Supercomput., vol. 73, no. 6, pp. 2558–2631, 2017.
D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.
S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, An efficient file hierarchy attribute-based encryption scheme in cloud computing, IEEE Trans. Inform. Forensics Secur., vol. 11, no. 6, pp. 1265–1277, 2016.
S. Belguith, N. Kaaniche, and M. Hammoudeh, Analysis of attribute-based cryptographic techniques and their application to protect cloud services, Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, p. e3667, 2022.
K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, Y. Yu, and A. Yang, A secure and efficient ciphertext-policy attribute-based proxy re-encryption for cloud data sharing, Future Gener. Comput. Syst., vol. 52, pp. 95–108, 2015.
D. Eckhoff and I. Wagner, Privacy in the smart city—applications, technologies, challenges, and solutions, IEEE Commun. Surv. Tutor., vol. 20, no. 1, pp. 489–516, 2018.
Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, Enabling public auditability and data dynamics for storage security in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, 2011.
K. Yang and X. Jia, An efficient and secure dynamic auditing protocol for data storage in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1717–1726, 2013.
C. Lin, Z. Shen, Q. Chen, and F. T. Sheldon, A data integrity verification scheme in mobile cloud computing, J. Netw. Comput. Appl., vol. 77, pp. 146–151, 2017.
D. S. Touceda, J. M. S. Cámara, S. Zeadally, and M. Soriano, Attribute-based authorization for structured Peer-to-Peer (P2P) networks, Comput. Stand. Interfaces, vol. 42, pp. 71–83, 2015.
H. Liu, H. Ning, Q. Xiong, and L. T. Yang, Shared authority based privacy-preserving authentication protocol in cloud computing, IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 241–251, 2015.
X. Yang, X. Huang, and J. K. Liu, Efficient handover authentication with user anonymity and untraceability for mobile cloud computing, Future Gener. Comput. Syst., vol. 62, pp. 190–195, 2016.
S. K. Pasupuleti, S. Ramalingam, and R. Buyya, An efficient and secure privacy-preserving approach for outsourced data of resource constrained mobile devices in cloud computing, J. Netw. Comput. Appl., vol. 64, pp. 12–22, 2016.
I. Khalil, A. Khreishah, and M. Azeem, Consolidated Identity Management System for secure mobile cloud computing, Comput. Netw., vol. 65, pp. 99–110, 2014.
N. H. Hassan and Z. Ismail, A conceptual model for investigating factors influencing information security culture in healthcare environment, Procedia Soc. Behav. Sci., vol. 65, pp. 1007–1012, 2012.
D. Box and D. Pottas, Improving information security behaviour in the healthcare context, Procedia Technol., vol. 9, pp. 1093–1103, 2013.
P. Kumar and H. J. Lee, Security issues in healthcare applications using wireless medical sensor networks: A survey, Sensors, vol. 12, no. 1, pp. 55–91, 2011.
I. Butun, N. Pereira, and M. Gidlund, Security risk analysis of LoRaWAN and future directions, Future Internet, vol. 11, no. 1, p. 3, 2018.
A. Singh and K. Chatterjee, Securing smart healthcare system with edge computing, Comput. Secur., vol. 108, p. 102353, 2021.
L. Qi, Y. Yang, X. Zhou, W. Rafique and J. Ma, Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp. 6503–6511, 2022.
X. Zhou, Y. Hu, J. Wu, W. Liang, J. Ma, and Q. Jin, Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT, IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 570–580, 2023.
P. Chaudhari and M. L. Das, Privacy preserving searchable encryption with fine-grained access control, IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 753–762, 2021.
L. Minder and A. Sinclair, The extended k-tree algorithm, J. Cryptol., vol. 25, no. 2, pp. 349–382, 2012.
R. C. Wasserman, Electronic medical records (EMRs), epidemiology, and epistemology: Reflections on EMRs and future pediatric clinical research, Acad. Pediatr., vol. 11, no. 4, pp. 280–287, 2011.
M. S. Hossain, G. Muhammad, and N. Guizani, Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics, IEEE Netw., vol. 34, no. 4, pp. 126–132, 2020.
T. T. Huong, T. P. Bac, D. M. Long, B. D. Thang, N. T. Binh, T. D. Luong and T. K. Phuc, Lockedge: Low-complexity cyberattack detection in IoT edge computing, IEEE Access, vol. 9, pp. 29696–29710, 2021.
M. Mistry, Softwarization of the infrastructure of Internet of Things for secure and smart healthcare, Ann. Rom. Soc. Cell Biol., vol. 25, no. 6, pp. 6680–6701, 2021.
M. A. Jan, W. Zhang, M. Usman, Z. Tan, F. Khan, and E. Luo, SmartEdge: An end-to-end encryption framework for an edge-enabled smart city application, J. Netw. Comput. Appl., vol. 137, pp. 1–10, 2019.
S. R. Eddy, Hidden Markov models, Curr. Opin. Struct. Biol., vol. 6, no. 3, pp. 361–365, 1996.
D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, BEdgeHealth: A decentralized architecture for edge-based IoMT networks using blockchain, IEEE Internet Things J., vol. 8, no. 14, pp. 11743–11757, 2021.
K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi, S. Benrernou, I. Brandic, A. Kertész, M. Parkin, and M. Carro, A survey on service quality description, ACM Comput. Surv., vol. 46, no. 1, p. 1, 2013.
Q. Yang, Q. Liu, and H. Lv, A decentralized system for medical data management via blockchain, J. Internet Technol., vol. 21, no. 5, pp. 1335–1345, 2020.
Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, MeDShare: Trust-less medical data sharing among cloud service providers via blockchain, IEEE Access, vol. 5, pp. 14757–14767, 2017.
B. D. Deebak, F. Al-Turjman, and L. Mostarda, Seamless secure anonymous authentication for cloud-based mobile edge computing, Comput. Electr. Eng., vol. 87, p. 106782, 2020.
Z. Ali, M. S. Hossain, G. Muhammad, I. Ullah, H. Abachi, and A. Alamri, Edge-centric multimodal authentication system using encrypted biometric templates, Future Gener. Comput. Syst., vol. 85, pp. 76–87, 2018.
L. Witt, M. Heyer, K. Toyoda, W. Samek, and D. Li, Decentral and incentivized federated learning frameworks: A systematic literature review, IEEE Internet Things J., vol. 10, no. 4, pp. 3642–3663, 2023.
M. Ali, F. Naeem, M. Tariq, and G. Kaddoum, Federated learning for privacy preservation in smart healthcare systems: A comprehensive survey, IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 778–789, 2023.
K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown, A. Beers, B. Rosen, D. L. Rubin, and J. Kalpathy-Cramer, Distributed deep learning networks among institutions for medical imaging, J. Am. Med. Inform. Assoc., vol. 25, no. 8, pp. 945–954, 2018.
Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, FedHealth: A federated transfer learning framework for wearable healthcare, IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, 2020.
G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, Edge computing: Current trends, research challenges and future directions, Computing, vol. 103, no. 5, pp. 993–1023, 2021.
A. Pekar, J. Mocnej, W. K. G. Seah, and I. Zolotova, Application domain-based overview of IoT network traffic characteristics, ACM Comput. Surv., vol. 53, no. 4, p. 87, 2020.
S. Khanagha, S. Ansari, S. Paroutis, and L. Oviedo, Mutualism and the dynamics of new platform creation: A study of Cisco and fog computing, Strateg. Manag. J., vol. 43, no. 3, pp. 476–506, 2022.
2154
Views
439
Downloads
6
Crossref
3
Web of Science
6
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).