[3]
V. L. Rubin, N. Conroy, Y. Chen, and S. Cornwell, Fake news or truth? Using satirical cues to detect potentially misleading news, in Proc. Second Workshop on Computational Approaches to Deception Detection, San Diego, CA, USA, 2016, pp. 7–17.
[4]
H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, Truth of varying shades: Analyzing language in fake news and political fact-checking, in Proc. 2017 Conf. Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 2931–2937.
[6]
J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K. F. Wong, and M. Cha, Detecting rumors from microblogs with recurrent neural networks, in Proc. Twenty-Fifth Int. Joint Conf. Artificial Intelligence, New York, NY, USA, 2016, pp. 3818–3824.
[7]
J. Ma, W. Gao, and K. F. Wong, Detect rumor and stance jointly by neural multi-task learning, in Proc. Web Conf. 2018, Lyon, France, 2018, pp. 585–593.
[8]
M. Cheng, S. Nazarian, and P. Bogdan, VRoC: Variational autoencoder-aided multi-task rumor classifier based on text, in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 2892–2898.
[9]
Y. Liu and Y. F. Wu, Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in Proc. Thirty-Seventh AAAI Conf. Artificial Intelligence, Washington DC, USA, 2018, p. 44.
[11]
V. Vaibhav, R. Mandyam, and E. Hovy, Do sentence interactions matter? Leveraging sentence level representations for fake news classification, in Proc. Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13 ), Hong Kong, China, 2019, pp. 134–139.
[12]
L. Hu, T. Yang, L. Zhang, W. Zhong, D. Tang, C. Shi, N. Duan, and M. Zhou, Compare to the knowledge: Graph neural fake news detection with external knowledge, in Proc. 59th Annu. Meeting of the Association for Computational Linguistics and the 11 th Int. Joint Conf. Natural Language Processing (Volume 1 : Long Papers ), Virtual Event, 2021, pp. 754–763.
[13]
F. Yu, Q. Liu, S. Wu, L. Wang, T. Tan, A convolutional approach for misinformation identification, in Proc. 26 th Int. Joint Conf. Artificial Intelligence, Melbourne, Australia, 2017, pp. 3901–3907.
[14]
K. Shu, S. Wang, and H. Liu, Beyond news contents: The role of social context for fake news detection, in Proc. Twelfth ACM Int. Conf. on Web Search and Data Mining, Melbourne, Australia, 2019, pp. 312–320.
[15]
Z. Kang, Y. Cao, Y. Shang, T. Liang, H. Tang, and L. Tong, Fake news detection with heterogenous deep graph convolutional network, in Proc. 25 th Pacific-Asia Conf. Knowledge Discovery and Data Mining, Virtual Event, 2021, pp. 408–420.
[16]
G. Wang, R. Ying, J. Huang, and J. Leskovec, Improving graph attention networks with large margin-based constraints, arXiv preprint arXiv: 1910.11945, 2019.
[17]
K. Xu, C. Li, Y. Tian, T. Sonobe, K. I. Kawarabayashi, and S. Jegelka, Representation learning on graphs with jumping knowledge networks, in Proc. 35 th Int. Conf. Machine Learning, Stockholmsmässan, Stockholm, 2018, pp. 5449–5458.
[18]
G. Wang, R. Ying, J. Huang, and J. Leskovec, Multi-hop attention graph neural network, in Proc. Thirtieth Int. Joint Conf. Artificial Intelligence, Montreal, Canada, 2021, pp. 3089–3096.
[19]
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks, in Proc. 6 th Int. Conf. Learning Representations, Vancouver, Canada, https://doi.org/10.48550/arXiv.1710.10903, 2023.
[20]
S. H. Kong, L. M. Tan, K. H. Gan, and N. H. Samsudin, Fake news detection using deep learning, in Proc. 2020 IEEE 10 th Symp. Computer Applications & Industrial Electronics (ISCAIE ), doi:10.1109/ISCA1E47305.2020.9108841.
[21]
Y. Wang, S. Qian, J. Hu, Q. Fang, and C. Xu, Fake news detection via knowledge-driven multimodal graph convolutional networks, in Proc. 2020 Int. Conf. Multimedia Retrieval, Dublin, Ireland, 2020, pp. 540–547.
[22]
J. Z. Pan, S. Pavlova, C. Li, N. Li, Y. Li, and J. Liu, Content based fake news detection using knowledge graphs, in Proc. 17 th Int. Semantic Web Conf., Monterey, CA, USA, 2018, pp. 669–683.
[23]
J. Gasteiger, S. Weißenberger, and S. Günnemann, Diffusion improves graph learning, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, p. 1197.
[24]
J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang, How powerful are k-hop message passing graph neural networks, in Proc. Thirty-Sixth Conf. Neural Information Processing Systems, New Orleans, LA, USA, https://openreview. net/forum?id=nN3aVRQsxGd, 2023.
[27]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6000–6010.
[28]
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv: 2010.11929v2.
[29]
D. Cai and W. Lam, Graph transformer for graph-to-sequence learning, in Proc. Thirty-Seventh AAAI Conf. Artificial Intelligence, Washington, DC, USA, 2020, pp. 7464–7471.
[30]
Z. Hu, Y. Dong, K. Wang, and Y. Sun, Heterogeneous graph transformer, in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 2704–2710.
[31]
G. Wang, R. Ying, J. Huang, and J. Leskovec, Multi-hop attention graph neural network, arXiv preprint arXiv: 2009.14332, 2020.
[32]
C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T. Y. Liu, Do transformers really perform badly for graph representation? arXiv preprint arXiv: 2016.05234v5.
[33]
W. Park, W. G. Chang, D. Lee, J. Kim, and S. W. Hwang, GRPE: Relative positional encoding for graph transformer, arXiv preprint arXiv: 2201.12787v3.
[34]
L. M. Hu, T. C. Yang, C. Shi, H. Y. Ji, and X. L. Li, Heterogeneous graph attention networks for semi-supervised short text classification, in Proc. 2019 Conf. on Empirical Methods in Natural Language Processing and the 9 th Int. Joint Conf. on Natural Language Processing (EMNLP-IJCNLP ), Hong Kong, China, 2019, pp. 4821–4830.
[35]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770–778.
[39]
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, in Proc. 2019 Conf. North American Chapter of the Association for Computational Linguistics : Human Language Technologies, Volume 1 (Long and Short Papers ), Minneapolis, MN, USA, 2018, pp. 4171–4186.
[40]
Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, RoBERTa: A robustly optimized BERT pretraining approach, arXiv preprint arXiv: 1907.11692.
[41]
P. He, J. Gao, and W. Chen, DeBERTaV3: Improving DeBERTa using ELECTRA-style pre-training with gradient-disentangled embedding sharing, arXiv preprint arXiv: 2111.09543.