[1]
S. L. Zhao, I. King, and M. R. Lyu, A survey of point-of-interest recommendation in location-based social networks, arXiv preprint arXiv: 1607.00647, 2016.
[2]
C. Cheng, H. Yang, M. R. Lyu, and I. King, Where you like to go next: Successive point-of-interest recommendation, in Proc. Twenty-Third Int. Joint Conf. Artificial Intelligence, Beijing, China, 2013, pp. 2605–2611.
[3]
M. Ye, P. Yin, and W. C. Lee, Location recommendation for location-based social networks, in Proc. 18th SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, San Jose, CA, USA, 2010, pp. 458–461.
[4]
H. Gao, J. Tang, X. Hu, and H. Liu, Exploring temporal effects for location recommendation on location-based social networks, in Proc. 7th ACM Conf. Recommender systems, Hong Kong, China, 2013, pp. 93–100.
[5]
Y. Liu, W. Wei, A. Sun, and C. Miao, Exploiting geographical neighborhood characteristics for location recommendation, in Proc. 23rd ACM Int. Conf. Conf. Information and Knowledge Management, Shanghai, China, 2014, pp. 739–748.
[6]
M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, Learning graph-based POI embedding for location-based recommendation, in Proc. 25th ACM Int. on Conf. Information and Knowledge Management, Indianapolis, IN, USA, 2016, pp. 15–24.
[7]
D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux, Revisiting user mobility and social relationships in LBSNs: A hypergraph embedding approach, in Proc. World Wide Web Conf., San Francisco, CA, USA, 2019.
[8]
T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin, Spatiotemporal representation learning for translation-based POI recommendation, ACM Trans. Inf. Syst., vol. 37, no. 2, p. 18.
[9]
J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z. Mei, Line: Large-scale information network embedding, in Proc. of WWW, Florence, Italy, 2015.
[10]
A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, KDD, vol. 2016, pp. 855–864, 2016.
[11]
A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in Proc. 26th Int. Conf. on Neural Information Processing Systems, Red Hook, NY, USA, 2013.
[12]
B. Chang, G. Jang, S. Kim, and J. Kang, Learning graph-based geographical latent representation for point-of-interest recommendation, in Proc. 29th ACM Int. Conf. Information & Knowledge Management, Virtual Event, 2020.
[13]
T. Yang, H. Gao, C. Yang, C. Shi, Q. Xie, X. Wang, and D. Wang, Memory-enhanced period-aware graph neural network for general POI recommendation, in Proc. Int. Conf. on Database Systems for Advanced Applications, Kyoto, Japan 2023, pp. 462–472.
[14]
H. Han, M. Zhang, M. Hou, F. Zhang, Z. Wang, E. Chen, H. Wang, J. Ma, and Q. Liu, STGCN: A spatial-temporal aware graph learning method for POI recommendation, in Proc. IEEE Int. Conf. Data Mining (ICDM), Sorrento, Italy, 2020.
[16]
J. C. Wu, X. Wang, F. L. Feng, X. N. He, L. Chen, J. X. Lian, and X. Xie, Self-supervised graph learning for recommendation, in Proc. 44th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, New York, NY, USA, pp. 726–735, 2021.
[17]
Z. Lin, C. Tian, Y. Hou, and W. X. Zhao, Improving graph collaborative filtering with neighborhood-enriched contrastive learning, in Proc. ACM Web Conf. 2022, Lyon, France, 2022, pp. 2320–2329.
[19]
M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling, Modeling relational data with graph convolutional networks, in Lecture Notes in Computer Science, A. Gangemi, R. Navigli, M. E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, M. Alam, eds. Cham, Switzerland: Springer, 2018, pp. 593–607.
[20]
X. Wang, X. N. He, M. Wang, F. L. Feng, and T. S. Chua, Neural graph collaborative filtering, in Proc. 42nd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, Paris, France, 2019.
[21]
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, LightGCN: Simplifying and powering graph convolution network for recommendation, in Proc. 43rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Virtual Event, 2020.
[22]
L. Wu, P. J. Sun, Y. J. Fu, R. C. Hong, X. T. Wang, and M. Wang, A neural influence diffusion model for social recommendation, in Proc. 42nd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, Paris, France, 2019.
[23]
W. Hamilton, Z. T. Ying, and J. Leskovec, Inductive representation learning on large graphs, in Proc. Thirty-first Annual Conf. on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 2017.
[25]
K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, Momentum contrast for unsupervised visual representation learning, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020.
[26]
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv: 1810.04805, 2018.
[27]
P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, Deep Graph Infomax, arXiv preprint arXiv: 1809.10341, 2019.
[29]
A. van den Oord, Y. Li, and O. Vinyals, Representation learning with contrastive predictive coding, arXiv preprint arXiv: 1807.03748, 2018.
[31]
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, arXiv preprint arXiv: 1205.2618, 2012.
[32]
X. N. He, L. Z. Liao, H. W. Zhang, L. Q. Nie, X. Hu, and T. S. Chua, Neural collaborative filtering, in Proc. 26th Int. Conf. on World Wide Web, pp. 173–182, 2017.
[33]
H. A. Rahmani, M. Aliannejadi, S. Ahmadian, M. Baratchi, M. Afsharchi, and F. Crestani, LGLMF: Local geographical based logistic matrix factorization model for POI recommendation, arXiv preprint arXiv:1909.06667, 2019.
[34]
H. A. Rahmani, M. Aliannejadi, M. Baratchi, and F. Crestani, Joint geographical and temporal modeling based on matrix factorization for point-of-interest recommendation, in European Conference on Information Retrieval, J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, F. Martins, eds. Cham, Switzerland: Springer, 2020, pp. 205–219.
[35]
N. Lim, B. Hooi, S. K. Ng, X. Wang, Y. L. Goh, R. Weng, and J. Varadarajan, STP-UDGAT: Spatial-temporal-preference user dimensional graph attention network for next POI recommendation, in Proc. 29th ACM Int. Conf. Information & Knowledge Management, Virtual Event, 2020.
[36]
Y. Li, T. Chen, Y. Luo, H. Yin, and Z. Huang, Discovering collaborative signals for next POI recommendation with iterative Seq2Graph augmentation, in Proc. Thirtieth Int. Joint Conf. Artificial Intelligence, Montreal, Canada, 2021.
[37]
X. Rao, L. Chen, Y. Liu, S. Shang, B. Yao, and P. Han, Graph-flashback network for next location recommendation, in Proc. 28th ACM SIGKDD Conf. Knowledge Discovery and Data Mining, Washington, DC, USA, 2022, pp. 1463–1471.
[38]
W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang, C. Tian et al., RecBole: Towards a unified, comprehensive and efficient framework for recommendation algorithms, in Proc. 30th ACM Int. Conf. Information & Knowledge Management, Virtual Event, 2021.
[39]
D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, in Proc. of 3rd Int. Conf. on Learning Representations, San Diego, CA, USA, 2015.