AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

BASIL: Binary Anchor-Based Smart Indoor Localization

School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Nokia Bell Labs, Paris-Saclay Center, Massy 91300, France
Show Author Information

Abstract

Indoor localization has been challenging research due to the invalidity of the global navigation satellite system in indoor scenarios. Recent advances in ambient assistive living have shown great power in detecting and locating persons living in their homes, especially using the ON/OFF binary sensors. In this paper, we exploit the Bluetooth low-energy beacons as device-based binary anchors under the lowest transmission power to turn any indoor activity and facility interaction into a binary location indicator. The binary anchors are fused with an extended Kalman filter based pedestrian dead-reckoning using a factor graph optimization, with extra constraints including the normalized magnetic loop closure which is optimized using an attenuation factor, and a rapidly-exploring random tree-based map collision validation. The proposed system provides a cost-effective, scalable, and robust localization for common indoor scenarios. The experimental results show an effective sub-meter precision for the long-term trajectories, and a small amount of anchors is enough for significant calibration in large scenarios.

References

[1]

Q. Shi, S. Zhao, X. Cui, M. Lu, and M. Jia, Anchor self-localization algorithm based on UWB ranging and inertial measurements, Tsinghua Science and Technology, vol. 24, no. 6, pp. 728–737, 2019.

[2]

M. Alloulah and H. Huang, Future millimeter-wave indoor systems: A blueprint for joint communication and sensing, Computer, vol. 52, no. 7, pp. 16–24, 2019.

[3]

N. U. Hassan, A. Naeem, M. A. Pasha, T. Jadoon, and C. Yuen, Indoor positioning using visible LED lights: A survey, ACM Comput. Surv., vol. 48, no. 2, p. 20, 2015.

[4]
F. Ijaz, H. K. Yang, A. W. Ahmad, and C. Lee, Indoor positioning: A review of indoor ultrasonic positioning systems, in Proc. 2013 15th Int. Conf. on Advanced Communications Technology (ICACT), PyeongChang, Republic of Korea, 2013, pp. 1146–1150.
[5]

Q. Tian, K. I. K. Wang, and Z. Salcic, Human body shadowing effect on UWB-based ranging system for pedestrian tracking, IEEE Trans. Instrum. Meas., vol. 68, no. 10, pp. 4028–4037, 2019.

[6]

S. He, B. Ji, and S. H. Gary Chan, Chameleon: survey-free updating of a fingerprint database for indoor localization, IEEE Pervasive Comput., vol. 15, no. 4, pp. 66–75, 2016.

[7]

S. He, W. Lin, and S. H. Gary Chan, Indoor localization and automatic fingerprint update with altered AP signals, IEEE Trans. Mob. Comput., vol. 16, no. 7, pp. 1897–1910, 2017.

[8]

S. Qiu, Z. Wang, H. Zhao, K. Qin, Z. Li, and H. Hu, Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion, Inf. Fusion, vol. 39, pp. 108–119, 2018.

[9]

T. Qin, P. Li, and S. Shen, VINS-mono: A robust and versatile monocular visual-inertial state estimator, IEEE Trans. Robot., vol. 34, no. 4, pp. 1004–1020, 2018.

[10]
D. Yang, W. Sheng, and R. Zeng, Indoor human localization using PIR sensors and accessibility map, in Proc. IEEE Int. Conf. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 2015, pp. 577–581.
[11]

Z. Yang, Y. Wang, Y. Pan, R. Huan, and R. Liang, Inaudible sounds from appliances as anchors: A new signal of opportunity for indoor localization, IEEE Sens. J., vol. 22, no. 23, pp. 23267–23276, 2022.

[12]

Z. Yang, Y. Pan, Q. Tian, and R. Huan, Real-time infrastructureless indoor tracking for pedestrian using a smartphone, IEEE Sens. J., vol. 19, no. 22, pp. 10782–10795, 2019.

[13]
J. Zhang, M. Wisse, and M. Bharatheesha, Guided RRT: A greedy search strategy for kinodynamic motion planning, in Proc. 13th Int. Conf. Control Automation Robotics & Vision (ICARCV), Singapore, 2014, pp. 480–485.
[14]

P. C. Ng, J. She, and R. Ran, A compressive sensing approach to detect the proximity between smartphones and BLE beacons, IEEE Internet Things J., vol. 6, no. 4, pp. 7162–7174, 2019.

[15]

A. MacKey, P. Spachos, L. Song, and K. N. Plataniotis, Improving BLE beacon proximity estimation accuracy through Bayesian filtering, IEEE Internet Things J., vol. 7, no. 4, pp. 3160–3169, 2020.

[16]
A. R. Jimenez, F. Seco, P. Peltola, and M. Espinilla, Location of persons using binary sensors and BLE beacons for ambient assitive living, in Proc. Int. Conf. Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 2018, pp. 206–212.
[17]
A. Jiménez and F. Seco, Event-driven real-time location-aware activity recognition in AAL scenarios, in Proc. UCAmI 2018, Basel, Switzerland: MDPI, 2018.
[18]
G. Lan, J. Liang, G. Liu, and Q. Hao, Development of a smart floor for target localization with bayesian binary sensing, in Proc. 2017 IEEE 31st Int. Conf. on Advanced Information Networking and Applications (AINA), Taipei, China, 2017, pp. 447–453.
[19]

Q. Tian, Z. Salcic, K. I. K. Wang, and Y. Pan, A hybrid indoor localization and navigation system with map matching for pedestrians using smartphones, Sensors, vol. 15, no. 12, pp. 30759–30783, 2015.

[20]
W. Ruan, Q. Z. Sheng, L. Yao, T. Gu, M. Ruta, and S. G. Li, Device-free indoor localization and tracking through Human-Object Interactions, in Proc. IEEE 17th Int. Symp. on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 2016, pp. 1–9.
[21]

D. Yang, B. Xu, K. Rao, and W. Sheng, Passive infrared (PIR)-based indoor position tracking for smart homes using accessibility maps and A-star algorithm, Sensors, vol. 18, no. 2, p. 332, 2018.

[22]

M. P. Fanti, G. Faraut, J. J. Lesage, and M. Roccotelli, An integrated framework for binary sensor placement and inhabitants location tracking, IEEE Trans. Syst. Man Cybern, Syst., vol. 48, no. 1, pp. 154–160, 2018.

[23]

E. Akeila, Z. Salcic, and A. Swain, Reducing low-cost INS error accumulation in distance estimation using self-resetting, IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 177–184, 2014.

[24]

Ö. Bebek, M. A. Suster, S. Rajgopal, M. J. Fu, X. Huang, M. C. Cavusoglu, D. J. Young, M. Mehregany, A. J. van den Bogert, and C. H. Mastrangelo, Personal navigation via high-resolution gait-corrected inertial measurement units, IEEE Trans. Instrum. Meas., vol. 59, no. 11, pp. 3018–3027, 2010.

[25]
O. Bebek, M. A. Suster, S. Rajgopal, M. J. Fu, X. Huang, M. C. Cavusoglu, D. J. Young, M. Mehregany, A. J. van den Bogert, and C. H. Mastrangelo, Personal navigation via shoe mounted inertial measurement units, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Taipei, China, 2010, pp. 1052–1058.
[26]

I. Skog, P. Handel, J. O. Nilsson, and J. Rantakokko, Zero-velocity detection—An algorithm evaluation, IEEE Trans. Biomed. Eng., vol. 57, no. 11, pp. 2657–2666, 2010.

[27]

F. Hölzke, J. P. Wolff, F. Golatowski, and C. Haubelt, Low-complexity online correction and calibration of pedestrian dead reckoning using map matching and GPS, Geo Spatial Inf. Sci., vol. 22, no. 2, pp. 114–127, 2019.

[28]

Y. Wang, H. Cheng, and M. Q. H. Meng, Inertial odometry using hybrid neural network with temporal attention for pedestrian localization, IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10, 2022.

[29]

F. Liu, J. Wang, J. Zhang, and H. Han, An indoor localization method for pedestrians base on combined UWB/PDR/floor map, Sensors, vol. 19, no. 11, p. 2578, 2019.

[30]

Q. Fan, J. Jia, P. Pan, H. Zhang, and Y. Sun, An improved INS/PDR/UWB integrated positioning method for indoor foot-mounted pedestrians, Sens. Rev., vol. 39, no. 3, pp. 318–331, 2019.

[31]
Z. Yang, Y. Pan, and L. Zhang, Hybrid orientation filter aided indoor tracking for pedestrians using a smartphone, in Proc. 13th IEEE Int. Conf. Control & Automation (ICCA), Ohrid, Macedonia, 2017, pp. 107–112.
[32]

K. Wen, K. Yu, Y. Li, S. Zhang, and W. Zhang, A new quaternion Kalman filter based foot-mounted IMU and UWB tightly-coupled method for indoor pedestrian navigation, IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4340–4352, 2020.

[33]

Z. Deng, P. Wang, T. Liu, Y. Cao, and B. Wang, Foot-mounted pedestrian navigation algorithm based on BOR/MINS integrated framework, IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3980–3989, 2020.

[34]

M. Basso, M. Galanti, G. Innocenti, and D. Miceli, Triggered INS/GNSS data fusion algorithms for enhanced pedestrian navigation system, IEEE Sens. J., vol. 20, no. 13, pp. 7447–7459, 2020.

[35]

Q. Liang and M. Liu, An automatic site survey approach for indoor localization using a smartphone, IEEE Trans. Automat. Sci. Eng., vol. 17, no. 1, pp. 191–206, 2020.

[36]

Y. Wang, J. Kuang, Y. Li, and X. Niu, Magnetic field-enhanced learning-based inertial odometry for indoor pedestrian, IEEE Trans. Instrum. Meas., vol. 71, pp. 1–13, 2022.

[37]

Y. Wang, X. Li, and J. Zou, A foot-mounted inertial measurement unit (IMU) positioning algorithm based on magnetic constraint, Sensors, vol. 18, no. 3, p. 741, 2018.

[38]

Z. Zuo, L. Liu, L. Zhang, and Y. Fang, Indoor positioning based on bluetooth low-energy beacons adopting graph optimization, Sensors, vol. 18, no. 11, p. 3736, 2018.

[39]

X. Fang, C. Wang, T. M. Nguyen, and L. Xie, Graph optimization approach to range-based localization, IEEE Trans. Syst. Man Cybern, Syst., vol. 51, no. 11, pp. 6830–6841, 2021.

[40]
Y. Gu, M. Ma, Q. Song, and Z. Zhou, Trajectory initialization foot-mounted IMU and calibration using a and UWB anchors, in Proc. Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 2018, pp. 1–6.
[41]
K. Kauffman and J. Raquet, Navigation via H-field signature map correlation and INS integration, in Proc. 2014 IEEE Radar Conf., Cincinnati, OH, USA, 2014, pp. 1390–1395.
[42]
C. Gao and R. Harle, Sequence-based magnetic loop closures for automated signal surveying, in Proc. Int. Conf. Indoor Positioning and Indoor Navigation (IPIN), Banff, Canada, 2015, pp. 1–12.
[43]
C. Gao and R. Harle, MSGD: Scalable back-end for indoor magnetic field-based GraphSLAM, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Singapore, 2017, pp. 3855–3862.
[44]

Q. Wang, H. Luo, H. Xiong, A. Men, F. Zhao, M. Xia, and C. Ou, Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration, IEEE Internet Things J., vol. 8, no. 3, pp. 2011–2026, 2021.

[45]

H. Wu, Z. Mo, J. Tan, S. He, and S. H. Gary Chan, Efficient indoor localization based on geomagnetism, ACM Trans. Sens. Netw., vol. 15, no. 4, p. 42, 2019.

[46]

L. Hou, Y. Li, Y. Zhuang, B. Zhou, G. J. Tsai, Y. Luo, and N. El-Sheimy, Orientation-aided stochastic magnetic matching for indoor localization, IEEE Sens. J., vol. 20, no. 2, pp. 1003–1010, 2020.

[47]
S. S. Puligilla, S. Tourani, T. Vaidya, U. S. Parihar, R. Kiran Sarvadevabhatla, and K. M. Krishna, Topological mapping for manhattan-like repetitive environments, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Paris, France, 2020.
[48]
R. Wang, M. Veloso, and S. Seshan, O-Snap: Optimal snapping of odometry trajectories for route identification, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 5824–5829.
[49]
R. Wang, R. Shroff, Y. Zha, S. Seshan, and M. Veloso, Indoor trajectory identification: Snapping with uncertainty, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, pp. 4901–4906.
[50]
B. J. Ho, P. Sodhi, P. Teixeira, M. Hsiao, T. Kusnur, and M. Kaess, Virtual occupancy grid map for submap-based pose graph SLAM and planning in 3D environments, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 2175–2182.
[51]

W. Xu, L. Liu, S. Zlatanova, W. Penard, and Q. Xiong, A pedestrian tracking algorithm using grid-based indoor model, Autom. Constr., vol. 92, pp. 173–187, 2018.

[52]

Y. Lin, J. Ma, Z. Lai, L. Huang, and M. Lei, A FDEM approach to study mechanical and fracturing responses of geo-materials with high inclusion contents using a novel reconstruction strategy, Eng. Fract. Mech., vol. 282, p. 109171, 2023.

[53]

Y. Gu, Q. Song, M. MA, Y. h. Li, and H. Ding, Mapaided pedestrian navigation based on foot-mounted inertial sensors, Systems Engineering and Electronics, vol. 7, p. 26, 2015.

[54]

H. Xia, J. Zuo, S. Liu, and Y. Qiao, Indoor localization on smartphones using built-in sensors and map constraints, IEEE Trans. Instrum. Meas., vol. 68, no. 4, pp. 1189–1198, 2019.

[55]
J. Sola, Quaternion kinematics for the error-state Kalman filter, arXiv preprint arXiv: 1711.02508, 2017.
[57]
T. Giorgino Computing and visualizing dynamic time warping alignments inR: The dtw package, J. Stat. Soft., vol. 31, no. 7, pp. 1–24, 2009.
[58]

D. Galvez-López and J. D. Tardos, Bags of binary words for fast place recognition in image sequences, IEEE Trans. Robot., vol. 28, no. 5, pp. 1188–1197, 2012.

[59]

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[60]
J. Dong and Z. Lv, miniSAM: A flexible factor graph non-linear least squares optimization framework, http://export.arxiv.org/abs/1909.00903v1, 2019.
[61]
A. Chulliat, W. Brown, P. Alken, C. Beggan, M. Nair, G. Cox, A. Woods, S. Macmillan, B. Meyer, and M. Paniccia, The US/UK world magnetic model for 2020-2025: Technical report, https://doi.org/10.25923/ytk1-yx35, 2020.
Tsinghua Science and Technology
Pages 1-17
Cite this article:
Yang Z, Li Y, Zhang Y, et al. BASIL: Binary Anchor-Based Smart Indoor Localization. Tsinghua Science and Technology, 2025, 30(1): 1-17. https://doi.org/10.26599/TST.2024.9010008

794

Views

268

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 October 2023
Accepted: 20 December 2023
Published: 11 September 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return