PDF (3.4 MB)
Collect
Submit Manuscript
Open Access

Hyperbolic Graph Wavelet Neural Network

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, China
Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang 761000, China
School of Computer Science, Qufu Normal University, Rizhao 276800, China
Show Author Information

Abstract

Graph neural networks (GNNs), grounded in spatial or spectral domains, have achieved remarkable success in learning graph representations in Euclidean space. Recent advances in spatial GNNs reveal that embedding graph nodes with hierarchical structures into hyperbolic space is more effective, reducing distortion compared to Euclidean embeddings. However, extending spectral GNNs to hyperbolic space remains several challenges, particularly in defining spectral graph convolution and enabling message passing within the hyperbolic geometry. To address these challenges, we propose the hyperbolic graph wavelet neural network (HGWNN), a novel approach for modeling spectral GNNs in hyperbolic space. Specifically, we first define feature transformation and spectral graph wavelet convolution on the hyperboloid manifold using exponential and logarithmic mappings, without increasing model parameter complexity. Moreover, we enable non-linear activation on the Poincaré manifold and efficient message passing via diffeomorphic transformations between the hyperboloid and Poincaré models. Experiments on four benchmark datasets demonstrate the effectiveness of our proposed HGWNN over baseline systems.

References

[1]

N. Chen, P. Zhang, N. Kumar, C. H. Hsu, L. Abualigah, and H. Zhu, Spectral graph theory-based virtual network embedding for vehicular fog computing: A deep reinforcement learning architecture, Knowl.-Based Syst., vol. 257, p. 109931, 2022.

[2]

L. Qi, X. Xu, X. Wu, Q. Ni, Y. Yuan, and X. Zhang, Digital-twin-enabled 6G mobile network video streaming using mobile crowdsourcing, IEEE J. Select. Areas Commun., vol. 41, no. 10, pp. 3161–3174, 2023.

[3]

X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, Artificial intelligence for edge service optimization in internet of vehicles: A survey, Tsinghua Science and Technology, vol. 27, no. 2, pp. 270–287, 2022.

[4]
D. Ma, Y. Wang, J. Ma, and Q. Jin, SGNR: A social graph neural network based interactive recommendation scheme for E-commerce, Tsinghua Science and Technology, vol. 28, no. 4, pp. 786–798, 2023.
[5]

L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development, IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5444–5457, 2023.

[6]

F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.

[7]

F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi, and L. Qi, Robust collaborative filtering recommendation with user-item-trust records, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 986–996, 2022.

[8]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, in Proc. 25 th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 1097–1105.
[9]
T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907, 2017.
[10]
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks, arXiv preprint arXiv:1710.10903, 2018.
[11]
M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Proc. 30 th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 3844–3852.
[12]
B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, Graph wavelet neural network, arXiv preprint arXiv:1904.07785, 2019.
[13]

A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature, vol. 453, no. 7191, pp. 98–101, 2008.

[14]

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, Hyperbolic geometry of complex networks, Phys. Rev. E, vol. 82, no. 3, p. 036106, 2010.

[15]

D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[16]

W. Chen, W. Fang, G. Hu, and M. W. Mahoney, On the hyperbolicity of small-world and treelike random graphs, Internet Mathematics, vol. 9, no. 4, pp. 434–491, 2013.

[17]

E. Ravasz and A. L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E, vol. 67, no. 2, p. 026112, 2003.

[18]
M. Nickel and D. Kiela, Learning continuous hierarchies in the Lorentz model of hyperbolic geometry, in Proc. 35 th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 3779–3788.
[19]

J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, Hyperbolic geometry, Flavors of Geometry, vol. 31, pp. 59–115, 1997.

[20]
O. E. Ganea, G. Bécigneul, and T. Hofmann, Hyperbolic neural networks, in Proc. 32 nd Int. Conf. Neural Information Processing Systems, Montréal, Canada, 2018, pp. 5350–5360.
[21]

N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, vol. 15, no. 2, pp. 215–245, 1995.

[22]
M. Nickel and D. Kiela, Poincaré embeddings for learning hierarchical representations, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6341–6350.
[23]
W. Peng, J. Shi, Z. Xia, and G. Zhao, Mix dimension in poincaré geometry for 3D skeleton-based action recognition, in Proc. 28 th ACM Int. Conf. Multimedia, Seattle, WA, USA, 2020, pp. 1432–1440.
[24]
I. Chami, R. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional neural networks, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 4868–4879.
[25]
Y. Zhang, X. Wang, X. Jiang, C. Shi, and Y. Ye, Hyperbolic graph attention network, arXiv preprint arXiv: 1912.03046, 2019.
[26]
W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on large graphs, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 1025–1035.
[27]
M. Ding, J. Tang, and J. Zhang, Semi-supervised learning on graphs with generative adversarial nets, in Proc. 27 th ACM Int. Conf. Information and Knowledge Management, Torino, Italy, 2018, pp. 913–922.
[28]
J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv: 1312.6203, 2014.
[29]
I. Balažević, C. Allen, and T. Hospedales, Multi-relational Poincaré graph embeddings, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 4463–4473.
[30]
C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M. Hermann, P. Battaglia, V. Bapst, D. Raposo, A. Santoro, et al., Hyperbolic attention networks, arXiv preprint arXiv: 1805.09786, 2018.
[31]
Q. Liu, M. Nickel, and D. Kiela, Hyperbolic graph neural networks, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 8230–8241.
[32]
M. Gromov, Hyperbolic groups, in Essays in Group Theory, S. M. Gersten, ed. New York, NY, USA: Springer, 1987, pp. 75–263.
[33]

W. F. Reynolds, Hyperbolic geometry on a hyperboloid, Am. Math. Mon., vol. 100, no. 5, pp. 442–455, 1993.

[34]
C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, Learning structural node embeddings via diffusion wavelets, in Proc. 24 th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, London, UK, 2018, pp. 1320–1329.
[35]

M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’institut Henri Poincaré, vol. 10, no. 4, pp. 215–310, 1948.

[36]
G. Bachmann, G. Bécigneul, and O. E. Ganea, Constant curvature graph convolutional networks, in Proc. 37 th Int’l Conf. Machine Learning, Virtual Event, 2020, pp. 486–496.
[37]
A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, Tree-like structure in large social and information networks, in Proc. 2013 IEEE 13 th Int. Conf. Data Mining, Dallas, TX, USA, 2013, pp. 1–10.
[38]
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature. Heidelberg, German: Springer, 1999.
[39]
V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès, Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs, in Proc. 24 th Annu. Symp. Computational Geometry, College Park, MD, USA, 2008, pp. 59–68.
[40]

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, Collective classification in network data, AI Magazine, vol. 29, no. 3, pp. 93–106, 2008.

[41]
Z. Yang, W. W. Cohen, and R. Salakhudinov, Revisiting semi-supervised learning with graph embeddings, in Proc. 33 rd Int. Conf. Machine Learning, New York, NY, USA, 2016, pp. 40–48.
[42]
X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proc. 13 th Int. Conf. Artificial Intelligence and Statistics, Sardinia, Italy, 2010, pp. 249–256.
[43]
L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, Regularization of neural networks using DropConnect, in Proc. 30 th Int. Conf. Machine Learning, Atlanta, GA, USA, 2013, pp. III-1058–III-1066.
[44]
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv: 1412.6980, 2017.
[45]

S. Bonnabel, Stochastic gradient descent on riemannian manifolds, IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2217–2229, 2013.

[46]
H. Zhang, S. J. Reddi, and S. Sra, Riemannian SVRG: Fast stochastic optimization on riemannian manifolds, in Proc. 30 th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 4599–4607.
[47]

L. Van Der Maaten, and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[48]

K. Lee and K. Yim, Study on the transaction linkage technique combined with the designated terminal for 5G-enabled IoT, Digit. Commun. Netw., vol. 8, no. 2, pp. 124–131, 2022.

[49]

Y. Miao, X. Bai, Y. Cao, Y. Liu, F. Dai, F. Wang, L. Qi, and W. Dou, A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things, IEEE Internet Things J., vol. 10, no. 24, pp. 21217–21226, 2023.

[50]

S. N. Mousavi, F. Chen, M. Abbasi, M. R. Khosravi, and M. Rafiee, Efficient pipelined flow classification for intelligent data processing in IoT, Digit. Commun. Netw., vol. 8, no. 4, pp. 561–575, 2022.

[51]

F. Wang, G. Li, Y. Wang, W. Rafique, M. R. Khosravi, G. Liu, Y. Liu, and L. Qi, Privacy-aware traffic flow prediction based on multi-party sensor data with zero trust in smart city, ACM Trans. Internet Technol., vol. 23, no. 3, p. 44, 2023.

[52]
Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. Srivastava, M. R. Khosravi, and L. Qi, ASTREAM: Data-stream-driven scalable anomaly detection with accuracy guarantee in IIoT environment, IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5, pp. 3007–3016, 2023.
[53]

L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R. Khosravi, R. Wang, and L. Qi, Time-aware missing healthcare data prediction based on ARIMA model, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 21, no. 4, pp. 1042–1050, 2024.

[54]
L. Kong, L. Wang, W. Gong, C. Yan, Y. Duan, and L. Qi, LSH-aware multitype health data prediction with privacy preservation in edge environment, World Wide Web, vol. 25, no. 5, pp. 1793–1808, 2022.
[55]

X. Su, S. Jiang, and D. Choi, Location privacy protection of maritime mobile terminals, Digit. Commun. Netw., vol. 8, no. 6, pp. 932–941, 2022.

[56]

Z. Xu, D. Zhu, J. Chen, and B. Yu, Splitting and placement of data-intensive applications with machine learning for power system in cloud computing, Digit. Commun. Netw., vol. 8, no. 4, pp. 476–484, 2022.

[57]

Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, and C. Yan, Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse, Digit. Commun. Netw., vol. 8, no. 4, pp. 498–507, 2022.

Tsinghua Science and Technology
Pages 1511-1525
Cite this article:
Zheng W, Zhang G, Zhao X, et al. Hyperbolic Graph Wavelet Neural Network. Tsinghua Science and Technology, 2025, 30(4): 1511-1525. https://doi.org/10.26599/TST.2024.9010032
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return