Graph neural networks (GNNs), grounded in spatial or spectral domains, have achieved remarkable success in learning graph representations in Euclidean space. Recent advances in spatial GNNs reveal that embedding graph nodes with hierarchical structures into hyperbolic space is more effective, reducing distortion compared to Euclidean embeddings. However, extending spectral GNNs to hyperbolic space remains several challenges, particularly in defining spectral graph convolution and enabling message passing within the hyperbolic geometry. To address these challenges, we propose the hyperbolic graph wavelet neural network (HGWNN), a novel approach for modeling spectral GNNs in hyperbolic space. Specifically, we first define feature transformation and spectral graph wavelet convolution on the hyperboloid manifold using exponential and logarithmic mappings, without increasing model parameter complexity. Moreover, we enable non-linear activation on the Poincaré manifold and efficient message passing via diffeomorphic transformations between the hyperboloid and Poincaré models. Experiments on four benchmark datasets demonstrate the effectiveness of our proposed HGWNN over baseline systems.
N. Chen, P. Zhang, N. Kumar, C. H. Hsu, L. Abualigah, and H. Zhu, Spectral graph theory-based virtual network embedding for vehicular fog computing: A deep reinforcement learning architecture, Knowl.-Based Syst., vol. 257, p. 109931, 2022.
L. Qi, X. Xu, X. Wu, Q. Ni, Y. Yuan, and X. Zhang, Digital-twin-enabled 6G mobile network video streaming using mobile crowdsourcing, IEEE J. Select. Areas Commun., vol. 41, no. 10, pp. 3161–3174, 2023.
X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, Artificial intelligence for edge service optimization in internet of vehicles: A survey, Tsinghua Science and Technology, vol. 27, no. 2, pp. 270–287, 2022.
L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development, IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5444–5457, 2023.
F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.
F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi, and L. Qi, Robust collaborative filtering recommendation with user-item-trust records, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 986–996, 2022.
A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature, vol. 453, no. 7191, pp. 98–101, 2008.
D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, Hyperbolic geometry of complex networks, Phys. Rev. E, vol. 82, no. 3, p. 036106, 2010.
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, vol. 393, no. 6684, pp. 440–442, 1998.
W. Chen, W. Fang, G. Hu, and M. W. Mahoney, On the hyperbolicity of small-world and treelike random graphs, Internet Mathematics, vol. 9, no. 4, pp. 434–491, 2013.
E. Ravasz and A. L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E, vol. 67, no. 2, p. 026112, 2003.
J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, Hyperbolic geometry, Flavors of Geometry, vol. 31, pp. 59–115, 1997.
N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, vol. 15, no. 2, pp. 215–245, 1995.
W. F. Reynolds, Hyperbolic geometry on a hyperboloid, Am. Math. Mon., vol. 100, no. 5, pp. 442–455, 1993.
M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’institut Henri Poincaré, vol. 10, no. 4, pp. 215–310, 1948.
P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, Collective classification in network data, AI Magazine, vol. 29, no. 3, pp. 93–106, 2008.
S. Bonnabel, Stochastic gradient descent on riemannian manifolds, IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2217–2229, 2013.
L. Van Der Maaten, and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.
K. Lee and K. Yim, Study on the transaction linkage technique combined with the designated terminal for 5G-enabled IoT, Digit. Commun. Netw., vol. 8, no. 2, pp. 124–131, 2022.
Y. Miao, X. Bai, Y. Cao, Y. Liu, F. Dai, F. Wang, L. Qi, and W. Dou, A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things, IEEE Internet Things J., vol. 10, no. 24, pp. 21217–21226, 2023.
S. N. Mousavi, F. Chen, M. Abbasi, M. R. Khosravi, and M. Rafiee, Efficient pipelined flow classification for intelligent data processing in IoT, Digit. Commun. Netw., vol. 8, no. 4, pp. 561–575, 2022.
F. Wang, G. Li, Y. Wang, W. Rafique, M. R. Khosravi, G. Liu, Y. Liu, and L. Qi, Privacy-aware traffic flow prediction based on multi-party sensor data with zero trust in smart city, ACM Trans. Internet Technol., vol. 23, no. 3, p. 44, 2023.
L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R. Khosravi, R. Wang, and L. Qi, Time-aware missing healthcare data prediction based on ARIMA model, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 21, no. 4, pp. 1042–1050, 2024.
X. Su, S. Jiang, and D. Choi, Location privacy protection of maritime mobile terminals, Digit. Commun. Netw., vol. 8, no. 6, pp. 932–941, 2022.
Z. Xu, D. Zhu, J. Chen, and B. Yu, Splitting and placement of data-intensive applications with machine learning for power system in cloud computing, Digit. Commun. Netw., vol. 8, no. 4, pp. 476–484, 2022.
Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, and C. Yan, Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse, Digit. Commun. Netw., vol. 8, no. 4, pp. 498–507, 2022.