[1]
C. F. Baker, C. J. Fillmore, and J. B. Lowe, The Berkeley FrameNet project, in Proc. 36 th Annu. Meeting of the Association for Computational Linguistics and 17 th Int. Conf. Computational Linguistics, Volume 1, Montreal, Canada, 1998, pp. 86–90.
[4]
C. Baker, M. Ellsworth, and K. Erk, SemEval-2007 task 19: Frame semantic structure extraction, in Proc. Fourth Int. Workshop on Semantic Evaluations (SemEval-2007 ), Prague, Czech Republic, 2007, pp. 99–104.
[6]
K. M. Hermann, D. Das, J. Weston, and K. Ganchev, Semantic frame identification with distributed word representations, in Proc. 52 nd Annu. Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers ), Baltimore, MD, USA, 2014, pp. 1448–1458.
[7]
S. Liu, Y. Chen, S. He, K. Liu, and J. Zhao, Leveraging FrameNet to improve automatic event detection, in Proc. 54 th Annu. Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers ), Berlin, Germany, 2016, pp. 2134–2143.
[8]
X. Wang, Y. Chen, N. Ding, H. Peng, Z. Wang, Y. Lin, X. Han, L. Hou, J. Li, Z. Liu, et al., MAVEN-ERE: A unified large-scale dataset for event coreference, temporal, causal, and subevent relation extraction, in Proc. 2022 Conf. Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 2022, pp. 926–941.
[9]
S. Guo, R. Li, H. Tan, X. Li, Y. Guan, H. Zhao, and Y. Zhang, A frame-based sentence representation for machine reading comprehension, in Proc. 58 th Annu. Meeting of the Association for Computational Linguistics, Virtual Event, 2020, pp. 891–896.
[10]
S. Guo, Y. Guan, R. Li, X. Li, and H. Tan, Incorporating syntax and frame semantics in neural network for machine reading comprehension, in Proc. 28 th Int. Conf. Computational Linguistics, Barcelona, Spain, 2020, pp. 2635–2641.
[13]
Y. Guan, S. Guo, R. Li, X. Li, and H. Zhang, Integrating semantic scenario and word relations for abstractive sentence summarization, in Proc. 2021 Conf. Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021, pp. 2522–2529.
[14]
Y. Guan, S. Guo, R. Li, X. Li, and H. Tan, Frame semantic-enhanced sentence modeling for sentence-level extractive text summarization, in Proc. 2021 Conf. Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021, pp. 4045–4052.
[15]
H. Peng, S. Thomson, S. Swayamdipta, and N. A. Smith, Learning joint semantic parsers from disjoint data, in Proc. 2018 Conf. North American Chapter of the Association for Computational Linguistics : Human Language Technologies, Volume 1 (Long Papers ), New Orleans, LA, USA, 2018, pp. 1492–1502.
[16]
X. Chen, C. Zheng, and B. Chang, Joint multi-decoder framework with hierarchical pointer network for frame semantic parsing, in Proc. Findings of the Association for Computational Linguistics : ACL-IJCNLP 2021, Virtual Event, 2021, pp. 2570–2578.
[18]
C. Zheng, X. Chen, R. Xu, and B. Chang, A double-graph based framework for frame semantic parsing, in Proc. 2022 Conf. North American Chapter of the Association for Computational Linguistics : Human Language Technologies, Seattle, WA, USA, 2022, pp. 4998–5011.
[20]
S. Swayamdipta, S. Thomson, C. Dyer, and N. A. Smith, Frame-semantic parsing with softmax-margin segmental RNNs and a syntactic scaffold, arXiv preprint arXiv: 1706.09528, 2017.
[21]
B. Yang and T. Mitchell, A joint sequential and relational model for frame-semantic parsing, in Proc. 2017 Conf. Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 1247–1256.
[22]
E. Bastianelli, A. Vanzo, and O. Lemon, Encoding syntactic constituency paths for frame-semantic parsing with graph convolutional networks, arXiv preprint arXiv: 2011.13210, 2020.
[23]
Z. Lin, Y. Sun, and M. Zhang, A graph-based neural model for end-to-end frame semantic parsing, in Proc. 2021 Conf. Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021, pp. 3864–3874.
[24]
T. Dozat and C. D. Manning, Deep biaffine attention for neural dependency parsing, arXiv preprint arXiv: 1611.01734, 2017.
[25]
M. Tan, R. Pang, and Q. V. Le, EfficientDet: Scalable and efficient object detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR ), Seattle, WA, USA, 2020, pp. 10778–10787.
[26]
M. Miwa and Y. Sasaki, Modeling joint entity and relation extraction with table representation, in Proc. 2014 Conf. Empirical Methods in Natural Language Processing (EMNLP ), Doha, Qatar, 2014, pp. 1858–1869.
[27]
P. Gupta, H. Schütze, and B. Andrassy, Table filling multi-task recurrent neural network for joint entity and relation extraction, in Proc. COLING 2016, the 26 th Int. Conf. Computational Linguistics : Technical Papers, Osaka, Japan, 2016, pp. 2537–2547.
[28]
M. Zhang, Y. Zhang, and G. Fu, End-to-end neural relation extraction with global optimization, in Proc. 2017 Conf. Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 1730–1740.
[29]
H. Adel and H. Schütze, Global normalization of convolutional neural networks for joint entity and relation classification, in Proc. 2017 Conf. Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 1723–1729.
[30]
Y. M. Shang, H. Huang, and X. Mao, OneRel: Joint entity and relation extraction with one module in one step, in Proc. 36 th AAAI Conf. Artificial Intelligence, Virtual Event, 2022, pp. 11285–11293.
[31]
J. Wang and W. Lu, Two are better than one: Joint entity and relation extraction with table-sequence encoders, in Proc. 2020 Conf. Empirical Methods in Natural Language Processing (EMNLP ), Virtual Event, 2020, pp. 1706–1721.
[32]
Y. Zhang, Y. Yang, Y. Li, B. Liang, S. Chen, Y. Dang, M. Yang, and R. Xu, Boundary-driven table-filling for aspect sentiment triplet extraction, in Proc. 2022 Conf. Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 2022, pp. 6485–6498.
[33]
J. Liu, Y. Chen, and J. Xu, Saliency as evidence: Event detection with trigger saliency attribution, in Proc. 60 th Annu. Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers ), Dublin, Ireland, 2022, pp. 4573–4585.
[34]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR ), Las Vegas, NV, USA, 2016, pp. 770–778.
[35]
J. Yu, B. Bohnet, and M. Poesio, Named entity recognition as dependency parsing, in Proc. 58 th Annu. Meeting of the Association for Computational Linguistics, Virtual Event, 2020, pp. 6470–6476.
[37]
W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al., A survey of large language models, arXiv preprint arXiv: 2303.18223, 2023.
[38]
H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., Llama 2: Open foundation and fine-tuned chat models, arXiv preprint arXiv: 2307.09288, 2023.