[1]
L. K. Liu, S. D. Lu, R. Zhong, B. F. Wu, Y. T. Yao, Q. Y. Zhang, and W. S. Shi, Computing systems for autonomous driving: State-of-the-art and challenges, arXiv preprint arXiv: 2009.14349, 2020.
[2]
S. C. Lin, Y. Zhang, C. H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, The architectural implications of autonomous driving: Constraints and acceleration, in Proc. Twenty-Third Int. Conf. Architectural Support for Programming Languages and Operating Systems, Williamsburg, VA, USA, 2018, pp. 751–766.
[3]
C. C. Wan, M. Santriaji, E. Rogers, H. Hoffmann, M. Maire, and S. Lu, ALERT: Accurate learning for energy and timeliness, arXiv preprint arXiv: 1911.00119, 2019.
[4]
C. J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia, et al., Machine learning at facebook: Understanding inference at the edge, in Proc. IEEE Int. Symp. on High Performance Computer Architecture (HPCA), Washington, DC, USA, 2019, pp. 331–344.
[5]
I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, D3: A dynamic deadline-driven approach for building autonomous vehicles, in Proc. Seventeenth European Conf. Computer Systems, Rennes, France, 2022, pp. 453–471.
[6]
L. Liu, Z. Dong, Y. Wang, and W. Shi, Prophet: Realizing a predictable real-time perception pipeline for autonomous vehicles, in Proc. IEEE Real-Time Systems Symp. (RTSS), Houston, TX, USA, 2022.
[7]
L. K. Liu, Y. Z. Wang, and W. S. Shi, Understanding time variations of DNN inference in autonomous driving, arXiv preprint arXiv: 2209.05487, 2022.
[13]
Y. Wang, S. Liu, X. Wu, and W. Shi, CAVBench: A benchmark suite for connected and autonomous vehicles, in Proc. IEEE/ACM Symp. on Edge Computing (SEC), Seattle, WA, USA, 2018.
[15]
S. Han, J. Pool, J. Tran, and W. J. Dally, Learning both weights and connections for efficient neural networks, arXiv preprint arXiv: 1506.02626, 2015.
[17]
A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson, and J. Mace, Serving DNNs like clockwork: Performance predictability from the bottom up, in Proc. Conf. 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), Berkeley, CA, USA, pp. 443–462, 2020.
[19]
A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 3354–3361.
[20]
H. Mao, X. Yang, and B. Dally, A delay metric for video object detection: What average precision fails to tell, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV). Seoul, Republic of Korea, 2019, pp. 573–582.
[25]
K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2961–2969.
[26]
J. Redmon and A. Farhadi, YOLOv3: An incremental improvement, arXiv preprint arXiv: 1804.02767, 2018.
[27]
D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool, Towards end-to-end lane detection: An instance segmentation approach, in Proc. IEEE Intelligent Vehicles Symp. (IV), Changshu, China, 2018, pp. 286–291.
[28]
Y. Ko, J. Jun, D. Ko, and M. Jeon, Key points estimation and point instance segmentation approach for lane detection, arXiv preprint arXiv: 2002.06604, 2020.
[29]
T. Zheng, H. Fang, Y. Zhang, W. J. Tang, Z. Yang, H. F. Liu, and D. Cai. Resa: Recurrent feature-shift aggregator for lane detection, arXiv preprint arXiv: 2008.13719, 2020.
[31]
O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Proc. 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015), Munich, Germany, 2015, pp. 234–241.
[32]
L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds. Cham, Switzerland: Springer, 2018, pp. 833–851.
[36]
M. Bertoluzzo, P. Bolognesi, O. Bruno, G. Buja, A. Landi, and A. Zuccollo, Drive-by-wire systems for ground vehicles, in Proc. IEEE Int. Symp. on Industrial Electronics, Ajaccio, France, 2004, pp. 711–716.
[39]
C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M. Bethge, and W. Brendel, Benchmarking robustness in object detection: Autonomous driving when winter is coming, arXiv preprint arXiv: 1907.07484, 2019.
[40]
R. Girshick Fast R-CNN, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440–1448.
[41]
R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580–587.
[42]
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, SSD: Single shot MultiBox detector, in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, M. Welling, eds. Cham, Switzerland: Springer, 2016, pp. 21–37.
[43]
C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, DSSD: Deconvolutional single shot detector, arXiv preprint arXiv: 1701.06659, 2017.
[44]
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779–788.
[45]
J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 7263–7271.
[46]
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J. M. Frahm, eds. Cham, Switzerland: Springer, 2020, pp. 213-229.
[47]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 10012–10022.
[48]
A. Bochkovskiy, C. Y. Wang, H. Yuan, and M. Liao. Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv: 2004.10934, 2020.
[50]
S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T. H. Lee, H. S. Hong, S.-H. Han, and I. S. Kweon, VPGNet: Vanishing point guided network for lane and road marking detection and recognition, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 1947–1955.
[51]
Y. Hou, Z. Ma, C. Liu, and C. C. Loy, Learning lightweight lane detection CNNs by self attention distillation, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 1013–1021.
[53]
J. Philion, FastDraw: Addressing the long tail of lane detection by adapting a sequential prediction network, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 11582–11591.
[54]
Y. C. Hsu, Z. Xu, Z. Kira, and J. Huang, Learning to cluster for proposal-free instance segmentation, in Proc. Int. Joint Conf. Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018, pp. 1–8.
[55]
Y. N. Hou, Agnostic lane detection, arXiv preprint arXiv: 1905.03704, 2019.
[56]
N. Garnett, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, 3D-LaneNet: End-to-end 3D multiple lane detection, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 2921–2930.
[58]
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 2881–2890.
[60]
S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 9759–9768.
[61]
Z. Cai and N. Vasconcelos, Cascade R-CNN: Delving into high quality object detection, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 6154–6162.
[62]
Z. Liu, H. Mao, C. Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, A ConvNet for the 2020s, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 11976–11986.
[63]
Z. Tian, C. Shen, H. Chen, and T. He, FCOS: Fully convolutional one-stage object detection, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 9627–9636.
[64]
T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Focal loss for dense object detection, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2980–2988.
[65]
P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka, L. Li, Z. Yuan, C. Wang et al., Sparse R-CNN: End-to-end object detection with learnable proposals, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 14454–14463.
[66]
J. He, Z. Deng, L. Zhou, Y. Wang, and Y. Qiao, Adaptive pyramid context network for semantic segmentation, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7519–7528.
[67]
Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, CCNet: Criss-cross attention for semantic segmentation, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 603–612.
[68]
J. He, Z. Deng, and Y. Qiao, Dynamic multi-scale filters for semantic segmentation, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 3562–3572.
[69]
M. Yin, Z. Yao, Y. Cao, X. Li, Z. Zhang, S. Lin, and H. Hu, Disentangled non-local neural networks, in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J. M. Frahm, eds. Cham, Switzerland: Springer, 2020pp. 191–207.
[71]
H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, PSANet: Point-wise spatial attention network for scene parsing, in Proc. European Conf. on Computer Vision (ECCV), 2018, pp. 270–286.
[72]
X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, Expectation-maximization attention networks for semantic segmentation, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 9167–9176.
[73]
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jxegou, Training data-efficient image transformers & distillation through attention, in Int. Conf. on Machine Learning, pp. 10347–10357, 2021.
[74]
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv: 2010.11929, 2020.[
[75]
F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, BDD100K: A diverse driving dataset for heterogeneous multitask learning, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 2636–2645.
[76]
M. Li, Y. X. Wang, and D. Ramanan, Towards streaming perception, in European Conf. on Computer Vision, 2020, pp. 473–488.
[78]
T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollxar, and C. L. Zitnick, Microsoft coco: Common objects in context, in Proc. Computer Vision–ECCV 2014 : 13th European Conf., Zurich, Switzerland, 2014, pp. 740–755.
[79]
J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, Perceptual generative adversarial networks for small object detection, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1222–1230.
[81]
M. Tan, R. Pang, and Q. V. Le, EfficientDet: Scalable and efficient object detection, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 10781–10790.
[85]
Spuri and Buttazzo, Efficient aperiodic service under earliest deadline scheduling, in Proc. Real-Time Systems Symp. REAL-94, San Juan, Puerto Rico, 1994, pp. 2–11.
[86]
A. Amarnath, S. Pal, H. Kassa, A. Vega, A. Buyuktosunoglu, H. Franke, J. D. Wellman, R. Dreslinski, and P. Bose, Hetsched: Quality-of-mission aware scheduling for autonomous vehicle socs, arXiv preprint arXiv: 2203.13396, 2022.
[88]
R. Mur-Artal, ORB-SLAM2: An opensource SLAM system for monocular, stereo and rgb-d cameras, arXiv preprint arXiv: 1610.06475, 2016.
[89]
S. Qiao, L. C. Chen, and A. Yuille, DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 10213–10224.
[90]
S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, Autoware on board: Enabling autonomous vehicles with embedded systems, in Proc. ACM/IEEE 9th Int. Conf. Cyber-Physical Systems (ICCPS), Porto, The Portuguese Republic, 2018, pp. 287–296.