[11]
J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, in Proc. 34 th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, p. 574.
[12]
A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv preprint arXiv: 2204.06125, 2022.
[13]
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 10684–10695.
[14]
C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, S. K. S. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al., Photorealistic text-to-image diffusion models with deep language understanding, in Proc. 36 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, p. 2643.
[16]
S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, DiffuSeq: Sequence to sequence text generation with diffusion models, in Proc. 11 th Int. Conf. Learning Representations, Kigali, Rwanda, https://doi.org/10.48550/arXiv.2210.08933, 2023.
[17]
X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto, Diffusion-LM improves controllable text generation, in Proc. 36 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, p. 313.
[18]
Z. Zhu, H. Zhao, H. He, Y. Zhong, S. Zhang, H. Guo, T. Chen, and W. Zhang, Diffusion models for reinforcement learning: A survey, arXiv preprint arXiv: 2311.01223, 2023.
[19]
Y. Fan, H. Liao, S. Huang, Y. Luo, H. Fu, and H. Qi, A survey of emerging applications of diffusion probabilistic models in MRI, arXiv preprint arXiv: 2311.11383, 2023.
[20]
Y. Song and S. Ermon, Improved techniques for training score-based generative models, in Proc. 34 th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, p. 1043.
[21]
Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, p. 1067.
[22]
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, in Proc. 9 th Int. Conf. on Learning Representations (ICLR ), https://doi.org/10.48550/arXiv.2011.13456, 2021.
[23]
W. Du, H. Zhang, T. Yang, and Y. Du, A flexible diffusion model, in Proc. 40 th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, p. 347.
[25]
X. Liu, D. H. Park, S. Azadi, G. Zhang, A. Chopikyan, Y. Hu, H. Shi, A. Rohrbach, and T. Darrell, More control for free! image synthesis with semantic diffusion guidance, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 289–299.
[26]
B. Wallace, A. Gokul, S. Ermon, and N. Naik, End-to-end diffusion latent optimization improves classifier guidance, in Proc. IEEE/CVF Int. Conf. Computer Vision, Paris, France, 2023, pp. 7246–7256.
[27]
S. Hong, G. Lee, W. Jang, and S. Kim, Improving sample quality of diffusion models using self-attention guidance, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 7428–7437.
[28]
W. G. Choi, S. J. Kim, T. Kim, and J. H. Chang, Prior-free Guided TTS: An improved and efficient diffusion-based text-guided speech synthesis, in Proc. INTERSPEECH 2023, Dublin, Ireland, 2023, pp. 4289–4293.
[32]
Q. Zhang and Y. Chen, Fast sampling of diffusion models with exponential integrator, in Proc. 11 th Int. Conf. on Learning Representations, Kigali, Rwanda, https://doi.org/10.48550/arXiv.2204.13902, 2023.
[34]
W. Luo, A comprehensive survey on knowledge distillation of diffusion models, arXiv preprint arXiv: 2304.04262, 2023.
[36]
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in Proc. 18 th Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 2015, p. 234–241.
[37]
W. Peebles and S. Xie, Scalable diffusion models with transformers, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 4172–4182.
[38]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6000–6010.
[40]
L. R. Medsker and L. C. Jain, Recurrent Neural Networks. Boca Raton, FL, USA: CRC Press, 2001, p. 392.
[41]
A. Hatamizadeh, J. Song, G. Liu, J. Kautz, and A. Vahdat, DiffiT: Diffusion vision transformers for image generation, arXiv preprint arXiv: 2312.02139, 2023.
[42]
G. J. Chowdary and Z. Yin, Diffusion transformer U-Net for medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vancouver, Canada, 2023, pp. 622–631.
[43]
H. A. Bedel and T. Çukur, DreaMR: Diffusion-driven counterfactual explanation for functional MRI, arXiv preprint arXiv: 2307.09547, 2023.
[44]
S. Shao, X. Yuan, Z. Huang, Z. Qiu, S. Wang, and K. Zhou, DiffuseExpand: Expanding dataset for 2D medical image segmentation using diffusion models, arXiv preprint arXiv: 2304.13416, 2023.
[45]
S. Zhang, J. Liu, B. Hu, and Z. Mao, GH-DDM: The generalized hybrid denoising diffusion model for medical image generation, Multimed. Syst., vol. 29, no. 3, pp. 1335–1345, 2023.
[46]
P. N. Huy and T. M. Quan, Denoising diffusion medical models, in Proc. 20 th Int. Symp. Biomedical Imaging (ISBI), Cartagena, Colombia, 2023, pp. 1–5.
[47]
Z. Dorjsembe, S. Odonchimed, and F. Xiao, Three-dimensional medical image synthesis with denoising diffusion probabilistic models. in Proc. Int. Conf. Medical Imaging with Deep Learning, Zurich, Switzerland, https://openreview.net/pdf?id=Oz7lKWVh45H, 2022.
[48]
W. H. L. Pinaya, P. D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, Brain imaging generation with latent diffusion models, in Proc. 2 nd MICCAI Workshop on Deep Generative Models, Singapore, 2022, pp. 117–126.
[50]
P. Esser, R. Rombach, and B. Ommer, Taming transformers for high-resolution image synthesis, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 12868–12878.
[51]
B. Kim and J. C. Ye, Diffusion deformable model for 4D temporal medical image generation, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 539–548.
[54]
C. Peng, P. Guo, S. K. Zhou, V. M. Patel, and R. Chellappa, Towards performant and reliable undersampled MR reconstruction via diffusion model sampling, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 623–633.
[56]
H. Chung, D. Ryu, M. T. McCann, M. L. Klasky, and J. C. Ye, Solving 3D inverse problems using pre-trained 2D diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 22542–22551.
[57]
L. X. Nguyen, P. S. Aung, H. Q. Le, S. B. Park, and C. S. Hong, A new chapter for medical image generation: The stable diffusion method, in Proc. Int. Conf. Information Networking (ICOIN), Bangkok, Thailand, 2023, pp. 483–486.
[59]
Q. Lyu and G. Wang, Conversion between CT and MRI images using diffusion and score-matching models, arXiv preprint arXiv: 2209.12104, 2022.
[60]
X. Li, K. Shang, G. Wang, and M. D. Butala, DDMM-Synth: A denoising diffusion model for cross-modal medical image synthesis with sparse-view measurement embedding, arXiv preprint arXiv: 2303.15770, 2023.
[62]
S. Pan, E. Abouei, J. Wynne, T. Wang, R. L. J. Qiu, Y. Li, C. W. Chang, J. Peng, J. Roper, P. Patel, et al., Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model, arXiv preprint arXiv: 2305.19467, 2023.
[64]
F. Bieder, J. Wolleb, A. Durrer, R. Sandkühler, and P. C. Cattin, Denoising diffusion models for memory-efficient processing of 3D medical images, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 552–567.
[65]
J. Wu, R. Fu, H. Fang, Y. Zhang, Y. Yang, H. Xiong, H. Liu, and Y. Xu, MedSegDiff: Medical image segmentation with diffusion probabilistic model, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 1623–1639.
[66]
J. Wu, W. Ji, H. Fu, M. Xu, Y. M. Jin, and Y. Xu, MedSegDiff-V2: Diffusion-based medical image segmentation with transformer, in Proc. AAAI Conf. Artificial Intelligence, Vancouver, Canada, 2024, pp. 6030–6038.
[67]
J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, Diffusion models for implicit image segmentation ensembles, in Proc. Int. Conf. Medical Imaging with Deep Learning, Zurich, Switzerland, 2022, pp. 1336–1348.
[68]
X. Guo, Y. Yang, C. Ye, S. Lu, B. Peng, H. Huang, Y. Xiang, and T. Ma, Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation, in Proc. 20 th Int. Symp. Biomedical Imaging (ISBI), Cartagena, Colombia, 2023, pp. 1–5.
[69]
Y. Fu, Y. Li, S. U. Saeed, M. J. Clarkson, and Y. Hu, Importance of aligning training strategy with evaluation for diffusion models in 3D multiclass segmentation, in Proc. 3 rd MICCAI Workshop on Deep Generative Models, Vancouver, Canada, 2024, pp. 86–59.
[70]
Z. Xing, L. Wan, H. Fu, G. Yang, and L. Zhu, Diff-UNet: A diffusion embedded network for volumetric segmentation, arXiv preprint arXiv: 2303.10326, 2023.
[71]
A. Rahman, J. M. J. Valanarasu, I. Hacihaliloglu, and V. M. Patel, Ambiguous medical image segmentation using diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 11536–11546.
[72]
T. Chen, C. Wang, and H. Shan, BerDiff: Conditional Bernoulli diffusion model for medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 491–501.
[73]
T. Amit, S. Shichrur, T. Shaharabany, and L. Wolf, Annotator consensus prediction for medical image segmentation with diffusion models, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 544–554.
[75]
D. Hu, Y. K. Tao, and I. Oguz, Unsupervised denoising of retinal OCT with diffusion probabilistic model, in Proc. SPIE 12032, Medical Imaging 2022 : Image Processing, San Diego, CA, USA, 2022, p. 1203206.
[76]
H. Chung, E. S. Lee, and J. C. Ye, MR image denoising and super-resolution using regularized reverse diffusion, IEEE Trans. Med. Imaging, vol. 42, no. 4, pp. 922–934, 2023.
[77]
X. Liu, Y. Xie, S. Diao, S. Tan, and X. Liang, A diffusion probabilistic prior for low-dose CT image denoising, arXiv preprint arXiv: 2305.15887, 2023.
[78]
W. Xia, Q. Lyu, and G. Wang, Low-dose CT using denoising diffusion probabilistic model for 20× speedup, arXiv preprint arXiv: 2209.15136, 2022.
[79]
P. Sanchez, A. Kascenas, X. Liu, A. Q. O’Neil, and S. A. Tsaftaris, What is healthy? Generative counterfactual diffusion for lesion localization, in Proc. 2 nd MICCAI Workshop on Deep Generative Models, Singapore, 2022, pp. 34–44.
[80]
J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin, Diffusion models for medical anomaly detection, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 35–45.
[81]
J. Wyatt, A. Leach, S. M. Schmon, and C. G. Willcocks, AnoDDPM: Anomaly detection with denoising diffusion probabilistic models using simplex noise, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 649–655.
[82]
H. Iqbal, U. Khalid, C. Chen, and J. Hua, Unsupervised anomaly detection in medical images using masked diffusion model, in Proc. 14 th Int. Workshop on Machine Learning in Medical Imaging, Vancouver, Canada, 2023, pp. 372–381.
[83]
W. H. L. Pinaya, M. S. Graham, R. Gray, P. F. D. Costa, P. D. Tudosiu, P. Wright, Y. H. Mah, A. D. MacKinnon, J. T. Teo, R. Jager, et al., Fast unsupervised brain anomaly detection and segmentation with diffusion models, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 705–714.
[84]
F. Behrendt, D. Bhattacharya, J. Krüger, R. Opfer, and A. Schlaefer, Patched diffusion models for unsupervised anomaly detection in brain MRI, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 1019–1032.
[85]
A. Q. Nichol and P. Dhariwal, Improved denoising diffusion probabilistic models, in Proc. 38 th Int. Conf. Machine Learning, Vienna, Austria, 2021, pp. 8162–8171.
[87]
Y. Guo, C. Yang, A. Rao, Z. Liang, Y. Wang, Y. Qiao, M. Agrawala, D. Lin, and B. Dai, AnimateDiff: Animate your personalized text-to-image diffusion models without specific tuning, arXiv preprint arXiv: 2307.04725, 2023.
[89]
N. Ruiz, Y. Li, V. Jampani, W. Wei, T. Hou, Y. Pritch, N. Wadhwa, M. Rubinstein, and K. Aberman, HyperDreamBooth: HyperNetworks for fast personalization of text-to-image models, arXiv preprint arXiv: 2307.06949, 2023.
[90]
N. Deckers, J. Peters, and M. Potthast, Manipulating embeddings of stable diffusion prompts, arXiv preprint arXiv: 2308.12059, 2023.
[91]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[95]
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2242–2251.
[96]
P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional adversarial networks, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5967–5976.
[97]
Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, and X. Wang, Attention-guided unified network for panoptic segmentation, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7019–7028.
[99]
F. Isensee, P. F. Jäger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, Automated design of deep learning methods for biomedical image segmentation, arXiv preprint arXiv: 1904.08128, 2019.
[100]
Y. Wang, Y. Yang, Z. Ma, K. C. Wong, and X. Li, EDCNN: Identification of genome-wide RNA-binding proteins using evolutionary deep convolutional neural network, Bioinformatics, vol. 38, no. 3, pp. 678–686, 2022.
[101]
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, in Proc. 16 th European Conf. Computer Vision (ECCV), Glasgow, UK, 2020, pp. 213–229.
[102]
H. Peiris, M. Hayat, Z. Chen, G. Egan, and M. Harandi, A robust volumetric transformer for accurate 3D tumor segmentation, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 162–172.
[103]
N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, et al., Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC), arXiv preprint arXiv: 1902.03368, 2019.
[106]
S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv preprint arXiv: 1811.02629, 2018.
[108]
A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. Van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, et al., A large annotated medical image dataset for the development and evaluation of segmentation algorithms, arXiv preprint arXiv: 1902.09063, 2019.
[109]
U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. Kalpathy-Cramer, F. C. Kitamura, S. Pati, et al., The RSNA-ASNR-MICCAI BRATS 2021 benchmark on brain tumor segmentation and radiogenomic classification, arXiv preprint arXiv: 2107.02314, 2021.
[110]
Y. Ma, H. Hao, J. Xie, H. Fu, J. Zhang, J. Yang, Z. Wang, J. Liu, Y. Zheng, and Y. Zhao, ROSE: A retinal OCT-angiography vessel segmentation dataset and new model, IEEE Trans. Med. Imaging, vol. 40, no. 3, pp. 928–939, 2021.
[111]
R. K. S. Kwan, A. C. Evans, and G. B. Pike, MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, vol. 18, no. 11, pp. 1085–1097, 1999.
[113]
C. McCollough, TU-FG-207A-04: Overview of the low dose CT grand challenge, Med. Phys., vol. 43, no. 6Part35, pp. 3759–3760, 2016.
[115]
H. Fu, F. Li, J. I. Orlando, H. Bogunović, X. Sun, J. Liao, Y. Xu, S. Zhang, and X. Zhang, Palm: Pathologic myopia challenge, IEEE Dataport.
[116]
S. Gornale and P. Patravali, Digital knee X-ray images, Mendeley Data.
[117]
J. O. Cross-Zamirski, P. Anand, G. Williams, E. Mouchet, Y. Wang, and C. B. Schönlieb, Class-guided image-to-image diffusion: Cell painting from brightfield images with class labels, in Proc. IEEE/CVF Int. Conf. Computer Vision Workshops, Paris, France, 2023, pp. 3802−3811.
[118]
S. Pan, C. W. Chang, J. Peng, J. Zhang, R. L. J. Qiu, T. Wang, J. Roper, T.Liu, H. Mao, and X. Yang, Cycle-guided denoising diffusion probability model for 3D cross-modality mri synthesis, arXiv 2305.00042, 2023.
[119]
X. Hu, Y. J. Chen, T. Y. Ho, and Y. Shi, Conditional diffusion models for weakly supervised medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 756−765.
[120]
A. Fontanella, G. Mair, J. Wardlaw, E. Trucco, and A. Storkey, Diffusion models for counterfactual generation and anomaly detection in brain images, arXiv preprint arXiv: 2308.02062, 2023.