AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Diffusion Models for Medical Image Computing: A Survey

School of Information Management, Xinjiang University of Finance and Economics, Urumqi 830012, China
Yili Friendship Hospital, Yining 835000, China
Show Author Information

Abstract

Diffusion models are a type of generative deep learning model that can process medical images more efficiently than traditional generative models. They have been applied to several medical image computing tasks. This paper aims to help researchers understand the advancements of diffusion models in medical image computing. It begins by describing the fundamental principles, sampling methods, and architecture of diffusion models. Subsequently, it discusses the application of diffusion models in five medical image computing tasks: image generation, modality conversion, image segmentation, image denoising, and anomaly detection. Additionally, this paper conducts fine-tuning of a large model for image generation tasks and comparative experiments between diffusion models and traditional generative models across these five tasks. The evaluation of the fine-tuned large model shows its potential for clinical applications. Comparative experiments demonstrate that diffusion models have a distinct advantage in tasks related to image generation, modality conversion, and image denoising. However, they require further optimization in image segmentation and anomaly detection tasks to match the efficacy of traditional models. Our codes are publicly available at: https://github.com/hiahub/CodeForDiffusion.

References

[1]

X. Chen, X. Wang, K. Zhang, K. M. Fung, T. C. Thai, K. Moore, R. S. Mannel, H. Liu, B. Zheng, and Y. Qiu, Recent advances and clinical applications of deep learning in medical image analysis, Med. Image Anal., vol. 79, p. 102444, 2022.

[2]

G. Varoquaux and V. Cheplygina, Machine learning for medical imaging: Methodological failures and recommendations for the future, NPJ Digit. Med., vol. 5, no. 1, p. 48, 2022.

[3]

Y. Zhao, X. Wang, T. Che, G. Bao, and S. Li, Multi-task deep learning for medical image computing and analysis: A review, Comput. Biol. Med., vol. 153, p. 106496, 2023.

[4]

S. Wang, G. Cao, Y. Wang, S. Liao, Q. Wang, J. Shi, C. Li, and D. Shen, Review and prospect: Artificial intelligence in advanced medical imaging, Front. Radiol., vol. 1, p. 781868, 2021.

[5]

A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu, E. Topol, J. Dean, and R. Socher, Deep learning-enabled medical computer vision, NPJ Digit. Med., vol. 4, no. 1, p. 5, 2021.

[6]

J. M. B. Haslbeck, L. F. Bringmann, and L. J. Waldorp, A tutorial on estimating time-varying vector autoregressive models, Multivar. Behav. Res., vol. 56, no. 1, pp. 120–149, 2021.

[7]

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, 2018.

[8]

D. P. Kingma and M. Welling, An introduction to variational autoencoders, Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307–392, 2019.

[9]

A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, Diffusion models in medical imaging: A comprehensive survey, Med. Image Anal., vol. 88, p. 102846, 2023.

[10]

L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M. H. Yang, Diffusion models: A comprehensive survey of methods and applications, ACM Comput. Surv., vol. 56, no. 4, p. 105, 2024.

[11]
J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, in Proc. 34 th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, p. 574.
[12]
A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv preprint arXiv: 2204.06125, 2022.
[13]
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 10684–10695.
[14]
C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, S. K. S. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al., Photorealistic text-to-image diffusion models with deep language understanding, in Proc. 36 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, p. 2643.
[15]

F. A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, Diffusion models in vision: A survey, IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 9, pp. 10850–10869, 2023.

[16]
S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, DiffuSeq: Sequence to sequence text generation with diffusion models, in Proc. 11 th Int. Conf. Learning Representations, Kigali, Rwanda, https://doi.org/10.48550/arXiv.2210.08933, 2023.
[17]
X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto, Diffusion-LM improves controllable text generation, in Proc. 36 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, p. 313.
[18]
Z. Zhu, H. Zhao, H. He, Y. Zhong, S. Zhang, H. Guo, T. Chen, and W. Zhang, Diffusion models for reinforcement learning: A survey, arXiv preprint arXiv: 2311.01223, 2023.
[19]
Y. Fan, H. Liao, S. Huang, Y. Luo, H. Fu, and H. Qi, A survey of emerging applications of diffusion probabilistic models in MRI, arXiv preprint arXiv: 2311.11383, 2023.
[20]
Y. Song and S. Ermon, Improved techniques for training score-based generative models, in Proc. 34 th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, p. 1043.
[21]
Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution, in Proc. 33 rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, p. 1067.
[22]
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, in Proc. 9 th Int. Conf. on Learning Representations (ICLR ), https://doi.org/10.48550/arXiv.2011.13456, 2021.
[23]
W. Du, H. Zhang, T. Yang, and Y. Du, A flexible diffusion model, in Proc. 40 th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, p. 347.
[24]

C. Yu, Y. Guan, Z. Ke, K. Lei, D. Liang, and Q. Liu, Universal generative modeling in dual domains for dynamic MRI, NMR Biomed., vol. 36, no. 12, p. e5011, 2023.

[25]
X. Liu, D. H. Park, S. Azadi, G. Zhang, A. Chopikyan, Y. Hu, H. Shi, A. Rohrbach, and T. Darrell, More control for free! image synthesis with semantic diffusion guidance, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 289–299.
[26]
B. Wallace, A. Gokul, S. Ermon, and N. Naik, End-to-end diffusion latent optimization improves classifier guidance, in Proc. IEEE/CVF Int. Conf. Computer Vision, Paris, France, 2023, pp. 7246–7256.
[27]
S. Hong, G. Lee, W. Jang, and S. Kim, Improving sample quality of diffusion models using self-attention guidance, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 7428–7437.
[28]
W. G. Choi, S. J. Kim, T. Kim, and J. H. Chang, Prior-free Guided TTS: An improved and efficient diffusion-based text-guided speech synthesis, in Proc. INTERSPEECH 2023, Dublin, Ireland, 2023, pp. 4289–4293.
[29]
J. Song, C. Meng, and S. Ermon, Denoising diffusion implicit models, in Proc. 9 th Int. Conf.on Learning Representations (ICLR), https://doi.org/10.48550/arXiv.2010.02502, 2021.
[30]
Q. Zhang, M. Tao, and Y. Chen, gDDIM: Generalized denoising diffusion implicit models, in Proc. 11 th Int. Conf. on. Learning Representations (ICLR), Kigali, Rwanda, https://doi.org/10.48550/arXiv.2206.05564, 2023.
[31]
L. Liu, Y. Ren, Z. Lin, and Z. Zhao, Pseudo numerical methods for diffusion models on manifolds, in Proc 10 th Int. Conf. on. Learning Representations (ICLR), https://doi.org/10.48550/arXiv.2202.09778, 2022.
[32]
Q. Zhang and Y. Chen, Fast sampling of diffusion models with exponential integrator, in Proc. 11 th Int. Conf. on Learning Representations, Kigali, Rwanda, https://doi.org/10.48550/arXiv.2204.13902, 2023.
[33]
H. Zheng, P. He, W. Chen, and M. Zhou, Truncated diffusion probabilistic models and diffusion-based adversarial auto-encoders, in Proc. 11 th Int. Conf. on Learning Representations, Kigali, Rwanda, https://doi.org/10.48550/arXiv.2202.09671, 2023.
[34]
W. Luo, A comprehensive survey on knowledge distillation of diffusion models, arXiv preprint arXiv: 2304.04262, 2023.
[35]

G. Du, X. Cao, J. Liang, X. Chen, and Y. Zhan, Medical image segmentation based on U-Net: A review, J. Imaging Sci. Technol., vol. 64, no. 2, p. 020508, 2020.

[36]
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in Proc. 18 th Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 2015, p. 234–241.
[37]
W. Peebles and S. Xie, Scalable diffusion models with transformers, in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 4172–4182.
[38]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6000–6010.
[39]

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, A survey of convolutional neural networks: Analysis, applications, and prospects, IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 6999–7019, 2022.

[40]
L. R. Medsker and L. C. Jain, Recurrent Neural Networks. Boca Raton, FL, USA: CRC Press, 2001, p. 392.
[41]
A. Hatamizadeh, J. Song, G. Liu, J. Kautz, and A. Vahdat, DiffiT: Diffusion vision transformers for image generation, arXiv preprint arXiv: 2312.02139, 2023.
[42]
G. J. Chowdary and Z. Yin, Diffusion transformer U-Net for medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vancouver, Canada, 2023, pp. 622–631.
[43]
H. A. Bedel and T. Çukur, DreaMR: Diffusion-driven counterfactual explanation for functional MRI, arXiv preprint arXiv: 2307.09547, 2023.
[44]
S. Shao, X. Yuan, Z. Huang, Z. Qiu, S. Wang, and K. Zhou, DiffuseExpand: Expanding dataset for 2D medical image segmentation using diffusion models, arXiv preprint arXiv: 2304.13416, 2023.
[45]
S. Zhang, J. Liu, B. Hu, and Z. Mao, GH-DDM: The generalized hybrid denoising diffusion model for medical image generation, Multimed. Syst., vol. 29, no. 3, pp. 1335–1345, 2023.
[46]
P. N. Huy and T. M. Quan, Denoising diffusion medical models, in Proc. 20 th Int. Symp. Biomedical Imaging (ISBI), Cartagena, Colombia, 2023, pp. 1–5.
[47]
Z. Dorjsembe, S. Odonchimed, and F. Xiao, Three-dimensional medical image synthesis with denoising diffusion probabilistic models. in Proc. Int. Conf. Medical Imaging with Deep Learning, Zurich, Switzerland, https://openreview.net/pdf?id=Oz7lKWVh45H, 2022.
[48]
W. H. L. Pinaya, P. D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, Brain imaging generation with latent diffusion models, in Proc. 2 nd MICCAI Workshop on Deep Generative Models, Singapore, 2022, pp. 117–126.
[49]

F. Khader, G. Müller-Franzes, S. T. Arasteh, T. Han, C. Haarburger, M. Schulze-Hagen, P. Schad, S. Engelhardt, B. Baeßler, S. Foersch, et al., Denoising diffusion probabilistic models for 3D medical image generation, Sci. Rep., vol. 13, no. 1, p. 7303, 2023.

[50]
P. Esser, R. Rombach, and B. Ommer, Taming transformers for high-resolution image synthesis, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 12868–12878.
[51]
B. Kim and J. C. Ye, Diffusion deformable model for 4D temporal medical image generation, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 539–548.
[52]
Y. Song, L. Shen, L. Xing, and S. Ermon, Solving inverse problems in medical imaging with score-based generative models, in Proc. 10 th Int. Conf. on Learning Representations, https://doi.org/10.48550/arXiv.2111.08005, 2022.
[53]

H. Chung and J. C. Ye, Score-based diffusion models for accelerated MRI, Med. Image Anal., vol. 80, p. 102479, 2022.

[54]
C. Peng, P. Guo, S. K. Zhou, V. M. Patel, and R. Chellappa, Towards performant and reliable undersampled MR reconstruction via diffusion model sampling, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 623–633.
[55]

A. Güngör, S. U. H. Dar, Ş. Öztuük, Y. Korkmaz, H. A. Bedel, G. Elmas, M. Ozbey, and T. Çukur, Adaptive diffusion priors for accelerated MRI reconstruction, Med. Image Anal., vol. 88, p. 102872, 2023.

[56]
H. Chung, D. Ryu, M. T. McCann, M. L. Klasky, and J. C. Ye, Solving 3D inverse problems using pre-trained 2D diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 22542–22551.
[57]
L. X. Nguyen, P. S. Aung, H. Q. Le, S. B. Park, and C. S. Hong, A new chapter for medical image generation: The stable diffusion method, in Proc. Int. Conf. Information Networking (ICOIN), Bangkok, Thailand, 2023, pp. 483–486.
[58]

M. Özbey, O. Dalmaz, S. U. H. Dar, H. A. Bedel, Ş, Öztürk, A. Güngör, and T. Çukur, Unsupervised medical image translation with adversarial diffusion models, IEEE Trans. Med. Imaging, vol. 42, no. 12, pp. 3524–3539, 2023.

[59]
Q. Lyu and G. Wang, Conversion between CT and MRI images using diffusion and score-matching models, arXiv preprint arXiv: 2209.12104, 2022.
[60]
X. Li, K. Shang, G. Wang, and M. D. Butala, DDMM-Synth: A denoising diffusion model for cross-modal medical image synthesis with sparse-view measurement embedding, arXiv preprint arXiv: 2303.15770, 2023.
[61]

Y. Li, H. C. Shao, X. Liang, L. Chen, R. Li, S. Jiang, J. Wang, and Y. Zhang, Zero-shot medical image translation via frequency-guided diffusion models, IEEE Trans. Med. Imaging, vol. 43, no. 3, pp. 980–993, 2024.

[62]
S. Pan, E. Abouei, J. Wynne, T. Wang, R. L. J. Qiu, Y. Li, C. W. Chang, J. Peng, J. Roper, P. Patel, et al., Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model, arXiv preprint arXiv: 2305.19467, 2023.
[63]

C. Tiago, S. R. Snare, J. Šprem, and K. McLeod, A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images, IEEE Access, vol. 11, pp. 17594–17602, 2023.

[64]
F. Bieder, J. Wolleb, A. Durrer, R. Sandkühler, and P. C. Cattin, Denoising diffusion models for memory-efficient processing of 3D medical images, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 552–567.
[65]
J. Wu, R. Fu, H. Fang, Y. Zhang, Y. Yang, H. Xiong, H. Liu, and Y. Xu, MedSegDiff: Medical image segmentation with diffusion probabilistic model, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 1623–1639.
[66]
J. Wu, W. Ji, H. Fu, M. Xu, Y. M. Jin, and Y. Xu, MedSegDiff-V2: Diffusion-based medical image segmentation with transformer, in Proc. AAAI Conf. Artificial Intelligence, Vancouver, Canada, 2024, pp. 6030–6038.
[67]
J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, Diffusion models for implicit image segmentation ensembles, in Proc. Int. Conf. Medical Imaging with Deep Learning, Zurich, Switzerland, 2022, pp. 1336–1348.
[68]
X. Guo, Y. Yang, C. Ye, S. Lu, B. Peng, H. Huang, Y. Xiang, and T. Ma, Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation, in Proc. 20 th Int. Symp. Biomedical Imaging (ISBI), Cartagena, Colombia, 2023, pp. 1–5.
[69]
Y. Fu, Y. Li, S. U. Saeed, M. J. Clarkson, and Y. Hu, Importance of aligning training strategy with evaluation for diffusion models in 3D multiclass segmentation, in Proc. 3 rd MICCAI Workshop on Deep Generative Models, Vancouver, Canada, 2024, pp. 86–59.
[70]
Z. Xing, L. Wan, H. Fu, G. Yang, and L. Zhu, Diff-UNet: A diffusion embedded network for volumetric segmentation, arXiv preprint arXiv: 2303.10326, 2023.
[71]
A. Rahman, J. M. J. Valanarasu, I. Hacihaliloglu, and V. M. Patel, Ambiguous medical image segmentation using diffusion models, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 11536–11546.
[72]
T. Chen, C. Wang, and H. Shan, BerDiff: Conditional Bernoulli diffusion model for medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 491–501.
[73]
T. Amit, S. Shichrur, T. Shaharabany, and L. Wolf, Annotator consensus prediction for medical image segmentation with diffusion models, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 544–554.
[74]

A. Abirami, P. Prakash, and Y. K. Ma, Variable-order fractional diffusion model-based medical image denoising, Math. Probl. Eng., vol. 2021, p. 8050017, 2021.

[75]
D. Hu, Y. K. Tao, and I. Oguz, Unsupervised denoising of retinal OCT with diffusion probabilistic model, in Proc. SPIE 12032, Medical Imaging 2022 : Image Processing, San Diego, CA, USA, 2022, p. 1203206.
[76]
H. Chung, E. S. Lee, and J. C. Ye, MR image denoising and super-resolution using regularized reverse diffusion, IEEE Trans. Med. Imaging, vol. 42, no. 4, pp. 922–934, 2023.
[77]
X. Liu, Y. Xie, S. Diao, S. Tan, and X. Liang, A diffusion probabilistic prior for low-dose CT image denoising, arXiv preprint arXiv: 2305.15887, 2023.
[78]
W. Xia, Q. Lyu, and G. Wang, Low-dose CT using denoising diffusion probabilistic model for 20× speedup, arXiv preprint arXiv: 2209.15136, 2022.
[79]
P. Sanchez, A. Kascenas, X. Liu, A. Q. O’Neil, and S. A. Tsaftaris, What is healthy? Generative counterfactual diffusion for lesion localization, in Proc. 2 nd MICCAI Workshop on Deep Generative Models, Singapore, 2022, pp. 34–44.
[80]
J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin, Diffusion models for medical anomaly detection, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 35–45.
[81]
J. Wyatt, A. Leach, S. M. Schmon, and C. G. Willcocks, AnoDDPM: Anomaly detection with denoising diffusion probabilistic models using simplex noise, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 649–655.
[82]
H. Iqbal, U. Khalid, C. Chen, and J. Hua, Unsupervised anomaly detection in medical images using masked diffusion model, in Proc. 14 th Int. Workshop on Machine Learning in Medical Imaging, Vancouver, Canada, 2023, pp. 372–381.
[83]
W. H. L. Pinaya, M. S. Graham, R. Gray, P. F. D. Costa, P. D. Tudosiu, P. Wright, Y. H. Mah, A. D. MacKinnon, J. T. Teo, R. Jager, et al., Fast unsupervised brain anomaly detection and segmentation with diffusion models, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 705–714.
[84]
F. Behrendt, D. Bhattacharya, J. Krüger, R. Opfer, and A. Schlaefer, Patched diffusion models for unsupervised anomaly detection in brain MRI, in Proc. Medical Imaging with Deep Learning, Nashville, TN, USA, 2023, pp. 1019–1032.
[85]
A. Q. Nichol and P. Dhariwal, Improved denoising diffusion probabilistic models, in Proc. 38 th Int. Conf. Machine Learning, Vienna, Austria, 2021, pp. 8162–8171.
[86]
P. Dhariwal and A. Q. Nichol, Diffusion models beat GANs on image synthesis, in Proc. 34 th Advances in Neural Information Processing Systems, https://doi.org/10.48550/arXiv.2105.05233, 2021.
[87]
Y. Guo, C. Yang, A. Rao, Z. Liang, Y. Wang, Y. Qiao, M. Agrawala, D. Lin, and B. Dai, AnimateDiff: Animate your personalized text-to-image diffusion models without specific tuning, arXiv preprint arXiv: 2307.04725, 2023.
[88]
D. Li, J. Li, and S. C. H. Hoi, Blip-diffusion: Pre-trained subject representation for controllable text-to-image generation and editing, in Proc. 37 th Advances in Neural Information Processing Systems, https://doi.org/10.48550/arXiv.2305.14720, 2023.
[89]
N. Ruiz, Y. Li, V. Jampani, W. Wei, T. Hou, Y. Pritch, N. Wadhwa, M. Rubinstein, and K. Aberman, HyperDreamBooth: HyperNetworks for fast personalization of text-to-image models, arXiv preprint arXiv: 2307.06949, 2023.
[90]
N. Deckers, J. Peters, and M. Potthast, Manipulating embeddings of stable diffusion prompts, arXiv preprint arXiv: 2308.12059, 2023.
[91]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[92]
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in Proc. 3 rd Int. Conf. on Learning Representations (ICLR), https://doi.org/10.48550/arXiv.1409.1556, 2015.
[93]

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017.

[94]

V. Badrinarayanan, A. Kendall, and R. Cipolla, SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, 2017.

[95]
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in Proc. IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2242–2251.
[96]
P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional adversarial networks, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5967–5976.
[97]
Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, and X. Wang, Attention-guided unified network for panoptic segmentation, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7019–7028.
[98]
L. Kong, C. Lian, D. Huang, Z. Li, Y. Hu, and Q. Zhou, Breaking the dilemma of medical image-to-image translation, in Proc. 34 th Advances in Neural Information Processing Systems, https://doi.org/10.48550/arXiv.2110.06465, 2021.
[99]
F. Isensee, P. F. Jäger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, Automated design of deep learning methods for biomedical image segmentation, arXiv preprint arXiv: 1904.08128, 2019.
[100]
Y. Wang, Y. Yang, Z. Ma, K. C. Wong, and X. Li, EDCNN: Identification of genome-wide RNA-binding proteins using evolutionary deep convolutional neural network, Bioinformatics, vol. 38, no. 3, pp. 678–686, 2022.
[101]
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, in Proc. 16 th European Conf. Computer Vision (ECCV), Glasgow, UK, 2020, pp. 213–229.
[102]
H. Peiris, M. Hayat, Z. Chen, G. Egan, and M. Harandi, A robust volumetric transformer for accurate 3D tumor segmentation, in Proc. 25 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022, pp. 162–172.
[103]
N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, et al., Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC), arXiv preprint arXiv: 1902.03368, 2019.
[104]

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–2024, 2015.

[105]

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data, vol. 4, no. 1, p. 170117, 2017.

[106]
S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv preprint arXiv: 1811.02629, 2018.
[107]

P. Bilic, P. Christ, H. B. Li, E. Vorontsov, A. Ben-Cohen, G. Kaissis, A. Szeskin, C. Jacobs, G. E. H. Mamani, G. Chartrand, et al., The liver tumor segmentation benchmark (LiTS), Med. Image Anal., vol. 84, p. 102680, 2023.

[108]
A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. Van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, et al., A large annotated medical image dataset for the development and evaluation of segmentation algorithms, arXiv preprint arXiv: 1902.09063, 2019.
[109]
U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. Kalpathy-Cramer, F. C. Kitamura, S. Pati, et al., The RSNA-ASNR-MICCAI BRATS 2021 benchmark on brain tumor segmentation and radiogenomic classification, arXiv preprint arXiv: 2107.02314, 2021.
[110]
Y. Ma, H. Hao, J. Xie, H. Fu, J. Zhang, J. Yang, Z. Wang, J. Liu, Y. Zheng, and Y. Zhao, ROSE: A retinal OCT-angiography vessel segmentation dataset and new model, IEEE Trans. Med. Imaging, vol. 40, no. 3, pp. 928–939, 2021.
[111]
R. K. S. Kwan, A. C. Evans, and G. B. Pike, MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, vol. 18, no. 11, pp. 1085–1097, 1999.
[112]

A. Carass, S. Roy, A. Jog, J. L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C. H. Sudre, et al., Longitudinal multiple sclerosis lesion segmentation: Resource and challenge, NeuroImage, vol. 148, pp. 77–102, 2017.

[113]
C. McCollough, TU-FG-207A-04: Overview of the low dose CT grand challenge, Med. Phys., vol. 43, no. 6Part35, pp. 3759–3760, 2016.
[114]

S. Jaeger, S. Candemir, S. Antani, Y. X. J. Wáng, P. X. Lu, and G. Thoma, Two public chest X-ray datasets for computer-aided screening of pulmonary diseases, Quant. Imaging Med. Surg., vol. 4, no. 6, pp. 475–477, 2014.

[115]
H. Fu, F. Li, J. I. Orlando, H. Bogunović, X. Sun, J. Liao, Y. Xu, S. Zhang, and X. Zhang, Palm: Pathologic myopia challenge, IEEE Dataport.
[116]
S. Gornale and P. Patravali, Digital knee X-ray images, Mendeley Data.
[117]
J. O. Cross-Zamirski, P. Anand, G. Williams, E. Mouchet, Y. Wang, and C. B. Schönlieb, Class-guided image-to-image diffusion: Cell painting from brightfield images with class labels, in Proc. IEEE/CVF Int. Conf. Computer Vision Workshops, Paris, France, 2023, pp. 3802−3811.
[118]
S. Pan, C. W. Chang, J. Peng, J. Zhang, R. L. J. Qiu, T. Wang, J. Roper, T.Liu, H. Mao, and X. Yang, Cycle-guided denoising diffusion probability model for 3D cross-modality mri synthesis, arXiv 2305.00042, 2023.
[119]
X. Hu, Y. J. Chen, T. Y. Ho, and Y. Shi, Conditional diffusion models for weakly supervised medical image segmentation, in Proc. 26 th Int. Conf. Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023, pp. 756−765.
[120]
A. Fontanella, G. Mair, J. Wardlaw, E. Trucco, and A. Storkey, Diffusion models for counterfactual generation and anomaly detection in brain images, arXiv preprint arXiv: 2308.02062, 2023.
Tsinghua Science and Technology
Pages 357-383
Cite this article:
Shi Y, Abulizi A, Wang H, et al. Diffusion Models for Medical Image Computing: A Survey. Tsinghua Science and Technology, 2025, 30(1): 357-383. https://doi.org/10.26599/TST.2024.9010047

1054

Views

375

Downloads

1

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 September 2023
Revised: 01 February 2024
Accepted: 28 February 2024
Published: 11 September 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return