PDF (18.3 MB)
Collect
Submit Manuscript
Open Access

An Efficient Algorithm for Approximate Polyline-Sourced Offset Computation on Triangulated Surfaces

School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China
Show Author Information

Abstract

The computation of polyline-sourced geodesic offset holds significant importance in a variety of applications, including but not limited to solid modeling, tool path generation for computer numerical control (CNC) machining, and parametrization. The traditional approaches for geodesic offsets have typically relied on the availability of an exact geodesic metric. Nevertheless, the computation of exact geodesics is characterized by its time-consuming nature and substantial memory usage. To tackle the limitation, our study puts forward a novel approach that seeks to circumvent the reliance on exact geodesic metrics. The proposed method entails a reformulated graph method that incorporates Steiner point insertion, serving as an effective solution for obtaining geodesic distances. By leveraging the aforementioned strategies, we present an efficient and robust algorithm designed for the computation of polyline-sourced geodesic offsets. The experimental evaluation, conducted on a diverse set of three-dimensional models, demonstrates significant improvements in computational speed and memory requirements compared to established state-of-the-art methods.

References

[1]

J. R. Rossignac and A. A. G. Requicha, Offsetting operations in solid modelling, Computer Aided Geometric Design, vol. 3, no. 2, pp. 129–148, 1986.

[2]
M. Forsyth, Shelling and offsetting bodies, in Proc. Third ACM Symp. Solid Modeling and Applications, Salt Lake City, UT, USA, 1995, pp. 373–381.
[3]

T. Maekawa, An overview of offset curves and surfaces, Comput.-Aided Des., vol. 31, no. 3, pp. 165–173, 1999.

[4]

S. Q. Xin, X. Ying, and Y. He, Efficiently computing geodesic offsets on triangle meshes by the extended Xin–Wang algorithm, Comput.-Aided Des., vol. 43, no. 11, pp. 1468–1476, 2011.

[5]

L. A. Piegl and W. Tiller, Computing offsets of NURBS curves and surfaces, Comput.-Aided Des., vol. 31, no. 2, pp. 147–156, 1999.

[6]

T. Lozano-Pérez and M. A. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles, Commun. ACM, vol. 22, no. 10, pp. 560–570, 1979.

[7]

C. Wu, C. Dai, X. Gong, Y. J. Liu, J. Wang, X. D. Gu, and C. C. L. Wang, Energy-efficient coverage path planning for general terrain surfaces, IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2584–2591, 2019.

[8]

H. Shen, J. Fu, Z. Chen, and Y. Fan, Generation of offset surface for tool path in NC machining through level set methods, Int. J. Adv. Manuf. Technol., vol. 46, nos. 9−12, pp. 1043–1047, 2010.

[9]

F. Liang, C. Kang, and F. Fang, Tool path planning on triangular mesh surfaces based on the shortest boundary path graph, Int. J. Prod. Res., vol. 60, no. 9, pp. 2683–2702, 2022.

[10]

N. M. Patrikalakis and L. Bardis, Offsets of curves on rational B-spline surfaces, Eng. Comput., vol. 5, no. 1, pp. 39–46, 1989.

[11]

A. Hatna, R. J. Grieve, and P. Broomhead, Offsetting 3D contours on parametric surfaces, Int. J. Adv. Manuf. Technol., vol. 16, no. 3, pp. 189–195, 2000.

[12]

J. K. Seong, G. Elber, and M. S. Kim, Trimming local and global self-intersections in offset curves/surfaces using distance maps, Comput.-Aided Des., vol. 38, no. 3, pp. 183–193, 2006.

[13]

W. Zhuo and J. Rossignac, Curvature-based offset distance: Implementations and applications, Comput. Graph., vol. 36, no. 5, pp. 445–454, 2012.

[14]
S. H. Lee, Offsetting operations on non-manifold boundary representation models with simple geometry, in Proc. Fifth ACM Symp. Solid Modeling and Applications, Ann Arbor, MI, USA, 1999, pp. 42–53.
[15]

N. Medimegh, S. Belaid, and N. Werghi, A survey of the 3D triangular mesh watermarking techniques, Int. J. Multimed., vol. 1, no. 1, pp. 33–39, 2015.

[16]

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H. Y. Shum, Mesh editing with poisson-based gradient field manipulation, ACM Trans. Graph., vol. 23, no. 3, pp. 644–651, 2004.

[17]

Y. Liu, W. Wang, B. Lévy, F. Sun, D. M. Yan, L. Lu, and C. Yang, On centroidal voronoi tessellation—energy smoothness and fast computation, ACM Trans. Graph., vol. 28, no. 4, p. 101, 2009.

[18]
D. Bommes and L. Kobbelt, Accurate computation of geodesic distance fields for polygonal curves on triangle meshes, in Proc. Vision, Modeling, and Visualization Conf. 2007, Saarbrücken, Germany, 2007, pp. 151–160.
[19]

C. Xu, Y. J. Liu, Q. Sun, J. Li, and Y. He, Polyline-sourced geodesic voronoi diagrams on triangle meshes, Comput. Graph. Forum, vol. 33, no. 7, pp. 161–170, 2014.

[20]

S. Q. Xin and G. J. Wang, Improving Chen and Han’s algorithm on the discrete geodesic problem, ACM Trans. Graph., vol. 28, no. 4, p. 104, 2009.

[21]

V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe, Fast exact and approximate geodesics on meshes, ACM Trans. Graph., vol. 24, no. 3, pp. 553–560, 2005.

[22]

R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci. USA, vol. 95, no. 15, pp. 8431–8435, 1998.

[23]

D. L. Chopp, Some improvements of the fast marching method, SIAM J. Sci. Comput., vol. 23, no. 1, pp. 230–244, 2001.

[24]

N. Yuan, P. Wang, W. Meng, S. Chen, J. Xu, S. Xin, Y. He, and W. Wang, A variational framework for curve shortening in various geometric domains, IEEE Trans. Vis. Comput. Graph., vol. 29, no. 4, pp. 1951–1963, 2023.

[25]

R. Liu, F. Xiao, and W. Meng, Efficiently computing shortest paths on curved surfaces with Newton’s method, Eng. Lett., vol. 31, no. 1, p. 338, 2023.

[26]

M. Lanthier, A. Maheshwari, and J. R. Sack, Approximating shortest paths on weighted polyhedral surfaces, Algorithmica, vol. 30, no. 4, pp. 527–562, 2001.

[27]

X. Ying, X. Wang, and Y. He, Saddle vertex graph (SVG): A novel solution to the discrete geodesic problem, ACM Trans. Graph., vol. 32, no. 6, p. 170, 2013.

[28]

W. Meng, S. Xin, C. Tu, S. Chen, Y. He, and W. Wang, Geodesic tracks: Computing discrete geodesics with track-based steiner point propagation, IEEE Trans. Vis. Comput. Graph., vol. 28, no. 12, pp. 4887–4901, 2022.

[29]
L. Aleksandrov, M. Lanthier, A. Maheshwari, and J. R. Sack, An ε—approximation algorithm for weighted shortest paths on polyhedral surfaces, in Proc. 6 th Scandinavian Workshop on Algorithm Theory, Stockholm, Sweden, 1998, pp. 11–22.
[30]
M. Lanthier, A. Maheshwari, and J. R. Sack, Approximating weighted shortest paths on polyhedral surfaces, in Proc. Thirteenth Annu. Symp. Computational Geometry, Nice, France, 1997, pp. 485–486.
[31]

L. Aleksandrov, A. Maheshwari, and J. R. Sack, Determining approximate shortest paths on weighted polyhedral surfaces, J. ACM, vol. 52, no. 1, pp. 25–53, 2005.

[32]

C. Y. Xu, J. R. Li, Q. H. Wang, and G. H. Hu, Contour parallel tool path planning based on conformal parameterisation utilising mapping stretch factors, Int. J. Prod. Res., vol. 57, no. 1, pp. 1–15, 2019.

[33]

X. Liang, G. Meng, Y. Xu, and H. Luo, A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment, Intel. Serv. Robot., vol. 11, no. 3, pp. 301–312, 2018.

[34]

J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem, SIAM J. Comput., vol. 16, no. 4, pp. 647–668, 1987.

[35]

P. Bose, A. Maheshwari, C. Shu, and S. Wuhrer, A survey of geodesic paths on 3D surfaces, Computational Geometry, vol. 44, no. 9, pp. 486–498, 2011.

[36]
K. Crane, M. Livesu, E. Puppo, and Y. Qin, A survey of algorithms for geodesic paths and distances, arXiv preprint arXiv: 2007.10430, 2020.
[37]
J. Chen and Y. Han, Shortest paths on a polyhedron, in Proc. Sixth Annu. Symp. Computational Geometry, Berkley, CA, USA, 1990, pp. 360–369.
[38]

Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang, Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation, ACM Trans. Graph., vol. 35, no. 4, p. 125, 2016.

[39]

C. Xu, T. Y. Wang, Y. J. Liu, L. Liu, and Y. He, Fast wavefront propagation (FWP) for computing exact geodesic distances on meshes, IEEE Trans. Vis. Comput. Graph., vol. 21, no. 7, pp. 822–834, 2015.

[40]

J. Du, Y. He, Z. Fang, W. Meng, and S. Q. Xin, On the vertex-oriented triangle propagation (VTP) algorithm: Parallelization and approximation, Comput.-Aided Des., vol. 130, p. 102943, 2021.

[41]

K. Crane, C. Weischedel, and M. Wardetzky, Geodesics in heat: A new approach to computing distance based on heat flow, ACM Trans. Graph., vol. 32, no. 5, p. 152, 2013.

[42]

O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Parallel algorithms for approximation of distance maps on parametric surfaces, ACM Trans. Graph., vol. 27, no. 4, p. 104, 2008.

[43]
S. Q. Xin, X. Ying, and Y. He, Constant-time all-pairs geodesic distance query on triangle meshes, in Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics and Games, Costa Mesa, CA, USA, 2012, pp. 31–38.
[44]

Y. Y. Adikusuma, Z. Fang, and Y. He, Fast construction of discrete geodesic graphs, ACM Trans. Graph., vol. 39, no. 2, p. 14, 2020.

[45]

B. Pham, Offset curves and surfaces: A brief survey, Comput.-Aided Des., vol. 24, no. 4, pp. 223–229, 1992.

[46]

T. Rausch, F. E. Wolter, and O. Sniehotta, Computation of medial curves on surfaces, The Mathematics of Surfaces, vol. 7, pp. 43–68, 1997.

[47]
Z. M. Chen, Y. G. Chen, and F. J. Liang, A new offset approach for curves on triangle mesh surfaces, in Proc. 2006 Int. Technology and Innovation Conf., Hangzhou, China, 2006, pp. 202–208.
[48]

V. D. Holla, K. G. Shastry, and B. G. Prakash, Offset of curves on tessellated surfaces, Comput.-Aided Des., vol. 35, no. 12, pp. 1099–1108, 2003.

[49]

A. Boschetto and L. Bottini, Triangular mesh offset aiming to enhance fused deposition modeling accuracy, Int. J. Adv. Manuf. Technol., vol. 80, no. 1, pp. 99–111, 2015.

[50]
M. De Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry : Algorithms and Applications. 2nd ed. Berlin, Heidelberg: Springer, 2000.
[51]
Q. Zhou and A. Jacobson, Thingi10K: A dataset of 10, 000 3D-printing models, arXiv preprint arXiv: 1605.04797, 2016.
[52]

S. H. Lo, A new mesh generation scheme for arbitrary planar domains, Int. J. Numer. Methods Eng., vol. 21, no. 8, pp. 1403–1426, 1985.

[53]

J. Xu, Y. Sun, and S. Wang, Tool path generation by offsetting curves on polyhedral surfaces based on mesh flattening, Int. J. Adv. Manuf. Technol., vol. 64, nos. 9–12, pp. 1201–1212, 2013.

Tsinghua Science and Technology
Pages 1744-1761
Cite this article:
Meng W, Yu H, Geng Y, et al. An Efficient Algorithm for Approximate Polyline-Sourced Offset Computation on Triangulated Surfaces. Tsinghua Science and Technology, 2025, 30(4): 1744-1761. https://doi.org/10.26599/TST.2024.9010239
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return