PDF (2.5 MB)
Collect
Submit Manuscript
Original Research | Open Access

Promoting effect of Se-allylselenocysteine on 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis

An-Chin Chenga,#Wan-Ru Jiangb,#Yu-Hsuan HsiaobVladimir BadmaevcChi-Tang HodRoch-Chui YuMin-Hsiung Panb,e,f()
Department of Nutrition and Health Sciences, Chun Jung Christian University, Tainan, Taiwan, China
Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China
American Medical Holdings Incorporated, New York, New York
Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, China
Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, China

#These authors contributed equally to this work.

Show Author Information

Abstract

Se-allylselenocysteine (ASC), an analogue of garlic bioactive compound, has been shown to inhibit mammary carcinogenesis in vivo and cell growth in vitro. However, the function of ASC on anti-inflammatory effects remains largely unknown. Therefore, we investigated whether ASC has an anti-inflammatory effect on lipopolysaccharide (LPS)-induced inflammation or an anti-tumor effect promoting on DMBA/TPA-induced skin tumorigenesis and tried to elucidate the mechanisms involved. Herein, the results showed that ASC inhibited LPS-induced production of nitric oxide (NO) with a decreased protein level of inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. However, ASC enhanced LPS-induced cyclooxygenase-2 (COX-2) protein levels and mRNA expression. Interestingly, we found for the first time that topical application of ASC on the dorsal skin of DMBA-initiated and TPA-promoted mice significantly accelerated skin tumorigenesis and raised tumor multiplicity as compared to the positive control group (DMBA/TPA). The number of tumours that were 1–3, 3–5, and > 5 mm in size per mouse increased in a dose-dependent manner in the ASC pre-treated groups. Pre-treatment with ASC showed a significant increase in the expression of COX-2 compared with the positive control group. Thus, ASC may modulate the COX-2 protein expression and promote DMBA/TPA-induced skin cancer in mice.

References

 

AC't Hoen, P., Rooseboom, M., Bijsterbosch, M.K., van Berkel, T.J., Vermeulen, N.P., and Commandeur, J.N. (2002). Induction of glutathione-S-transferase mRNA levels by chemopreventive selenocysteine Se-conjugates. Biochem. Pharmacol. 63(10): 1843–1849.

 

Arnault, I., and Auger, J. (2006). Seleno-compounds in garlic and onion. J. Chromatogr. A 1112(1-2): 23–30.

 

Arora, N., Bansal, M.P., and Koul, A. (2013). Modulatory effects of Azadirachta indica leaf extract on cutaneous and hepatic biochemical status during promotion phase of DMBA/TPA-induced skin tumorigenesis in mice. Indian J. Biochem. Biophys. 50: 105–113.

 

Balmain, A., Ramsden, M., Bowden, G.T., and Smith, J. (1984). Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307(5952): 658–660.

 

Bourcier, C., Jacquel, A., Hess, J., Peyrottes, I., Angel, P., Hofman, P., Auberger, P., Pouyssegur, J., and Pages, G. (2006). p44 mitogen-activated protein kinase (extracellular signal-regulated kinase 1)-dependent signaling contributes to epithelial skin carcinogenesis. Cancer Res. 66(5): 2700–2707.

 

Cao, Y., and Prescott, S.M. (2002). Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J. Cell Physiol. 190(3): 279–286.

 

Casanova, M.L., Larcher, F., Casanova, B., Murillas, R., Fernandez-Acenero, M.J., Villanueva, C., Martinez-Palacio, J., Ullrich, A., Conti, C.J., and Jorcano, J.L. (2002). A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res. 62(12): 3402–3407.

 

Chun, K.S., Kim, S.H., Song, Y.S., and Surh, Y.J. (2004). Celecoxib inhibits phorbol ester-induced expression of COX-2 and activation of AP-1 and p38 MAP kinase in mouse skin. Carcinogenesis 25(5): 713–722.

 

Dasgupta, P., Chandiramani, V., Parkinson, M.C., Beckett, A., and Fowler, C.J. (1998). Treating the human bladder with capsaicin: is it safe? Eur. Urol. 33(1): 28–31.

 

DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 54(1): 63–128.

 

Ejaz, S., Chekarova, I., Cho, J.W., Lee, S.Y., Ashraf, S., and Lim, C.W. (2009). Effect of aged garlic extract on wound healing: a new frontier in wound management. Drug Chem. Toxicol. 32(3): 191–203.

 

Florentino, I.F., Silva, D.P., Silva, D.M., Cardoso, C.S., Moreira, A.L., Borges, C.L., Soares, C.M.A., Galdino, P.M., Lião, L.M., Ghedini, P.C., Menegatti, R., and Costa, E.A. (2017). Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: the role of nitric oxide. Nitric Oxide. 69: 35–44.

 

Ip, C., Zhu, Z., Thompson, H.J., Lisk, D., and Ganther, H.E. (1999). Chemoprevention of mammary cancer with Se-allylselenocysteine and other selenoamino acids in the rat. Anticancer Res. 19(4B): 2875–2880.

 

Jiang, W., Zhu, Z., Ganther, H.E., Ip, C., and Thompson, H.J. (2001). Molecular mechanisms associated with Se-allylselenocysteine regulation of cell proliferation and apoptosis. Cancer Lett. 162(2): 167–173.

 

Jiao, J., Ishikawa, T.O., Dumlao, D.S., Norris, P.C., Magyar, C.E., Mikulec, C., Catapang, A., Dennis, E.A., Fischer, S.M., and Herschman, H.R. (2014). Targeted deletion and lipidomic analysis identify epithelial cell COX-2 as a major driver of chemically induced skin cancer. Mol. Cancer Res. 12(11): 1677–1688.

 

Kemp, C.J. (2005). Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin. Cancer Biol. 15(6): 460–473.

 

Kim, K.Y., and Kang, H. (2016). Sakuranetin Inhibits Inflammatory Enzyme, Cytokine, and Costimulatory Molecule Expression in Macrophages through Modulation of JNK, p38, and STAT1. J. Evidence-Based Complementary Altern. Med. 2016: 9824203.

 

Kolbert, Z., Molnár, Á., Feigl, G., and van Hoewyk, D. (2018). Plant selenium toxicity: Proteome in the crosshairs. J. Plant Physiol. 232: 291–300.

 

Lee, H.H., Han, M.H., Hwang, H.J., Kim, G.Y., Moon, S.K., Hyun, J.W., Kim, W.J., and Choi, Y.H. (2015). Diallyl trisulfide exerts anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophages by suppressing the Toll-like receptor 4/nuclear factor-kappa B pathway. Int. J. Mol. Med. 35(2): 487–495.

 

Lin, M.H., Lee, Y.H., Cheng, H.L., Chen, H.Y., Jhuang, F.H., and Chueh, P.J. (2016). Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1). Molecules 21(7): 849.

 

Liu, K.L., Chen, H.W., Wang, R.Y., Lei, Y.P., Sheen, L.Y., and Lii, C.K. (2006). DATS reduces LPS-induced iNOS expression, NO production, oxidative stress, and NF-kappaB activation in RAW 264.7 macrophages. J. Agric. Food Chem. 54(9): 3472–3478.

 

Liu, Z., Zhu, P., Tao, Y., Shen, C., Wang, S., Zhao, L., Wu, H., Fan, F., Lin, C., Chen, C., Zhu, Z., Wei, Z., Sun, L., Liu, Y., Wang, A., and Lu, Y. (2015). Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice. Food Chem. Toxicol. 81: 1–8.

 

Ma, G.Z., Liu, C.H., Wei, B., Qiao, J., Lu, T., Wei, H.C., Chen, H.D., and He, C.D. (2013). Baicalein inhibits DMBA/TPA-induced skin tumorigenesis in mice by modulating proliferation, apoptosis, and inflammation. Inflammation 36(2): 457–467.

 

Müller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., and Furstenberger, G. (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc. Natl. Acad. Sci. USA 99(19): 12483–12488.

 

Nelson, M.A., Futscher, B.W., Kinsella, T., Wymer, J., and Bowden, G.T. (1992). Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumors. Proc. Natl. Acad. Sci. USA 89(14): 6398–6402.

 

Pan, M.H., and Ho, C.T. (2008). Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 37(11): 2558–2574.

 

Passos, G.F., Medeiros, R., Marcon, R., Nascimento, A.F., Calixto, J.B., and Pianowski, L.F. (2013). The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. Eur. J. Pharmacol. 698(1-3): 413–420.

 

Qian, K., Wang, G., Cao, R., Liu, T., Qian, G., Guan, X., Guo, Z., Xiao, Y., and Wang, X. (2016). Capsaicin Suppresses Cell Proliferation, Induces Cell Cycle Arrest and ROS Production in Bladder Cancer Cells through FOXO3a-Mediated Pathways. Molecules 21(10): 1406.

 

Qiu, J., Shi, Z., and Jiang, J. (2017). Cyclooxygenase-2 in glioblastoma multiforme. Drug discovery today 22(1): 148–156.

 

Rice, N.R., and Ernst, M.K. (1993). In vivo control of NF-kappa B activation by I kappa B alpha. EMBO J. 12(12): 4685–4695.

 

Ryu, J.H., Park, H.J., Jeong, Y.Y., Han, S., Shin, J.H., Lee, S.J., Kang, M.J., Sung, N.J., and Kang, D. (2015). Aged red garlic extract suppresses nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages through inhibition of NF-kappa B. J. Med. Food 18(4): 439–445.

 

Sahbaz, A., Isik, H., Aynioglu, O., Gungorduk, K., and Gun, B.D. (2014). Effect of intraabdominal administration of Allium sativum (garlic) oil on postoperative peritoneal adhesion. Eur. J. Obstet. Gynecol. Reprod. Biol. 177: 44–47.

 

Sarkar, F.H., Adsule, S., Li, Y., and Padhye, S. (2007). Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini-Rev. Med. Chem. 7(6): 599–608.

 

Seibert, K., and Masferrer, J.L. (1994). Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 4(1): 17–23.

 

Sharma, S.K., Vij, A.S., and Sharma, M. (2013). Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 720(1-3): 55–62.

 

Shen, C., Wang, S., Shan, Y., Liu, Z., Fan, F., Tao, L., Liu, Y., Zhou, L., Pei, C., Wu, H., Tian, C., Ruan, J., Chen, W., Wang, A., Zheng, S., and Lu, Y. (2014). Chemomodulatory efficacy of lycopene on antioxidant enzymes and carcinogen-induced cutaneum carcinoma in mice. Food Funct. 5(7): 1422–1431.

 

Shin, J.H., Ryu, J.H., Kang, M.J., Hwang, C.R., Han, J., and Kang, D. (2013). Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages. Food Chem. Toxicol. 58: 545–551.

 

Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., and Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol. 2010: 215158.

 

Steinmetz, K.A., and Potter, J.D. (1996). Vegetables, fruit, and cancer prevention: a review. J. Am. Diet Assoc. 96(10): 1027–1039.

 

Wang, D., and Dubois, R.N. (2006). Prostaglandins and cancer. Gut 55(1): 115–122.

 

Wang, M.T., Honn, K.V., and Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 26(3-4): 525–534.

 

Wu, J.C., Wang, F.Z., Tsai, M.L., Lo, C.Y., Badmaev, V., Ho, C.T., Wang, Y.J., and Pan, M.H. (2015). Se-Allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells. Mol. Nutr. Food Res. 59(12): 2511–2522.

 

Xie, Q.W., Kashiwabara, Y., and Nathan, C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269(7): 4705–4708.

 

Yamamizu, K., Hamada, Y., and Narita, M. (2015). kappa Opioid receptor ligands regulate angiogenesis in development and in tumours. Br. J. Pharmacol. 172(2): 268–276.

 

Zhu, Z., Jiang, W., Ganther, H.E., Ip, C., and Thompson, H.J. (2000a). Activity of Se-allylselenocysteine in the presence of methionine gamma-lyase on cell growth, DNA integrity, apoptosis, and cell-cycle regulatory molecules. Mol. Carcinog. 29(4): 191–197.

 

Zhu, Z., Jiang, W., Ganther, H.E., Ip, C., and Thompson, H.J. (2000b). In vitro effects of Se-allylselenocysteine and Se-propylselenocysteine on cell growth, DNA integrity, and apoptosis. Biochem. Pharmacol. 60(10): 1467–1473.

Journal of Food Bioactives
Pages 79-87
Cite this article:
Cheng A-C, Jiang W-R, Hsiao Y-H, et al. Promoting effect of Se-allylselenocysteine on 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Journal of Food Bioactives, 2020, 9: 79-87. https://doi.org/10.31665/JFB.2020.9221
Metrics & Citations  
Article History
Copyright
Return