This study aimed to evaluate the effects of dietary egg yolk phosphatidylcholine (EPC) and soybean phosphatidylcholine (SPC) on obesity mice fed a high-fat diet (HFD). After 60 days of dietary intervention, the effects were evaluated by biochemical indices and serum lipidomic analysis. EPC and SPC markedly reduced serum total cholesterol, serum triacylglycerol (TAG) and low-density lipoprotein cholesterol, while increased high-density lipoprotein cholesterol. EPC was more effective in reducing malondialdehyde and superoxide dismutase in liver than SPC. Main lipids including glycerophospholipids, TAG, sphingolipids and fatty acyls were significantly modified by EPC. Compared with HFD, EPC increased 10 main differential lipids such as phosphatidyl ethanolamine (22:6_20:0). The expressions of related protein including sterol-regulatory element binding proteins sterol-regulatory element binding proteins (SREBP-1c) and peroxisome proliferator-activated receptor α (PPAR-α) were significantly down-regulated with EPC treatment. Therefore, EPC was more effective than SPC in improving obesity by regulating glycerophospholipid metabolism.
Abdelmegeed, M.A., Yoo, S.H., Henderson, L.E., Gonzalez, F.J., Woodcroft, K.J., and Song, B.J. (2011). PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J. Nutr. 141(4): 603–610.
Barber, M.N., Risis, S., Yang, C., Meikle, P.J., Staples, M., Febbraio, M.A., and Bruce, C.R. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. Plos ONE 7(7): e41456.
Blesso, C. (2015). Egg Phospholipids and Cardiovascular Health. Nutrients 7: 2731–2747.
Bonfleur, M.L., Borck, P.C., Ribeiro, R.A., Caetano, L.C., Soares, G.M., Car-neiro, E.M., and Balbo, S.L. (2015). Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supple-mented with taurine. Life Sci. 135: 15–21.
Chang, X., Wang, Z., Zhang, J., Yan, H., Bian, H., Xia, M., Lin, H., Jiang, J., and Gao, X. (2016). Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease. J. Transl Med. 14(1): 266.
Choi, J.H., Kim, M.K., Yeo, S.H., and Kim, S. (2020). Short-term Cudrania tri-cuspidata fruit vinegar administration attenuates obesity in high-fat di-et-fed mice by improving fat accumulation and metabolic parameters. Sci. Rep. 10(1): 21102.
Cui, Y., Cai, T., Zhou, Z., Mu, Y., Lu, Y., Gao, Z., Wu, J., and Zhang, Y. (2020). Health Effects of Alternate-Day Fasting in Adults: A Systematic Review and Meta-Analysis. Front. Nutr. 7: 586036.
Drescher, H.K., Weiskirchen, R., Fulop, A., Hopf, C., de San Roman, E.G., Huesgen, P.F., de Bruin, A., Bongiovanni, L., Christ, A., Tolba, R., Traut-wein, C., and Kroy, D.C. (2019). The Influence of Different Fat Sources on Steatohepatitis and Fibrosis Development in the Western Diet Mouse Model of Non-alcoholic Steatohepatitis (NASH). Front. Physiol. 10: 770.
Erami, K., Tanaka, Y., Kawamura, S., Miyago, M., Sawazaki, A., Imaizumi, K., and Sato, M. (2016). Dietary Egg Yolk Supplementation Improves Low-Protein-Diet-Induced Fatty Liver in Rats. J. Nutr. Sci. Vitaminol. 62(4): 240–248.
Feng, S., Dai, Z., Liu, A.B., Huang, J., Narsipur, N., Guo, G., Kong, B., Reuhl, K., Lu, W., Luo, Z., and Yang, C.S. (2018). Intake of stigmasterol and beta-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863(10): 1274–1284.
Garcia-Compean, D., Gonzalez-Gonzalez, J.A., Lavalle-Gonzalez, F.J., Gon-zalez-Moreno, E.I., Villarreal-Perez, J.Z., and Maldonado-Garza, H.J. (2016). Current Concepts in Diabetes Mellitus and Chronic Liver Dis-ease: Clinical Outcomes, Hepatitis C Virus Association, and Therapy. Dig. Dis. Sci. 61(3): 371–380.
Garcia-Jaramillo, M., Spooner, M.H., Lohr, C.V., Wong, C.P., Zhang, W., and Jump, D.B. (2019). Lipidomic and transcriptomic analysis of western di-et-induced nonalcoholic steatohepatitis (NASH) in female Ldlr-/- mice. PloS ONE 14(4): e0214387.
Gholami, A., Zamani, F., Hosseini, B., Sharafkhani, R., Maadi, M., Moosavi Jahromi, Z., Khazaee-Pool, M., and Sohrabi, M. (2018). Metabolic Syn-drome Is Associated with Health-Related Quality of Life in Suspected Patients with Nonalcoholic Steatohepatitis. Med. Princ. Pract. 27(2): 166–172.
Hadchouel, A., Marchand-Martin, L., Franco-Montoya, M.L., Peaudecerf, L., Ancel, P.Y., Delacourt, C., and EPIPAGEADO study group. (2015). Salivary Telomere Length and Lung Function in Adolescents Born Very Preterm: A Prospective Multicenter Study. PloS ONE 10(9): e0136123.
Hu, Y., Chen, J., Xu, Y., Zhou, H., Huang, P., Ma, Y., Gao, M., Cheng, S., Zhou, H., and Lv, Z. (2020). Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front. Immunol. 11: 569727.
Huang, J., Yang, D., Gao, S., and Wang, T. (2008). Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livest. Sci. 118(1-2): 53–60.
Jiang, G.Z., Zhou, M., Zhang, D.D., Li, X.F., and Liu, W.B. (2018). The mecha-nism of action of a fat regulator: Glycyrrhetinic acid (GA) stimulating fatty acid transmembrane and intracellular transport in blunt snout bream (Megalobrama amblycephala). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 226: 83–90.
Jiang, Y., Noh, S.K., and Koo, S.I. (2001). Egg phosphatidylcholine decreases the lymphatic absorption of cholesterol in rats Journal of Nutrition. J. Nutr. 131(9): 2358–2363.
Jin, S., Song, C., Li, S., Zhang, Y., Chen, C., Zhou, X., Xu, Y., Feng, Y., Zhang, Z., and Jiang, H. (2014). Preventive effects of turmeric on the high-fat diet-induced hyperlipidaemia in mice associated with a targeted me-tabolomic approach for the analysis of serum lysophosphatidylcholine using LC-MS/MS. J. Funct. Foods. 11: 130–141.
Jung, U.J., Cho, Y.Y., and Choi, M.S. (2016). Apigenin Ameliorates Dyslipidem-ia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients 8(5): 305.
Kim, H.Y., Kim, M., Park, H.M., Kim, J., Kim, E.J., Lee, C.H., and Park, J.H. (2014). Lysophospholipid profile in serum and liver by high-fat diet and tumor induction in obesity-resistant BALB/c mice. Nutrition. 30(11-12): 1433–1441.
Lai, W.Y., Wang, J.W., Huang, B.T., Lin, E.P.Y., and Yang, P.C. (2019). A Novel TNF-α-Targeting Aptamer for TNF-α-Mediated Acute Lung Injury and Acute Liver Failure. Theranostics 9(6): 1741–1751.
Lee, C.Y., and Lee, C.L. (2021). Comparison of the Improvement Effect of Deep Ocean Water with Different Mineral Composition on the High Fat Diet-Induced Blood Lipid and Nonalcoholic Fatty Liver Disease in a Mouse Model. Nutrients 13(5): 1732.
Lee, H.S., Nam, Y., Chung, Y.H., Kim, H.R., Park, E.S., Chung, S.J., Kim, J.H., Sohn, U.D., Kim, H.C., Oh, K.W., and Jeong, J.H. (2014). Beneficial ef-fects of phosphatidylcholine on high-fat diet-induced obesity, hyper-lipidemia and fatty liver in mice. Life Sci. 118(1): 7–14.
Li, X.Y., Qu, N., Wang, X.J., Yang, J.X., Xin, Y.Y., Zhu, J.B., Bai, X., and Duan, Y.B. (2020). Regulation of X-Ray Irradiation on the Activity and Expression Levels of CYP1A2 and CYP2E1 in Rats. Front. Pharmacol. 10: 1575.
Lim, D.W., Bose, S., Wang, J.H., Choi, H.S., Kim, Y.M., Chin, Y.W., Jeon, S.H., Kim, J.E., and Kim, H. (2017). Modified SJH alleviates FFAs-induced he-patic steatosis through leptin signaling pathways. Sci. Rep. 7: 45425.
Lim, T., Ryu, J., Lee, K., Park, S.Y., and Hwang, K.T. (2020). Protective Effects of Black Raspberry (Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients 12(8): 2448.
Ling, J., Chaba, T., Zhu, L.F., Jacobs, R.L., and Vance, D.E. (2012). Hepatic ratio of phosphatidylcholine to phosphatidylethanolamine predicts survival after partial hepatectomy in mice. Hepatology 55(4): 1094–1102.
Min, Q.Q., Qin, L.Q., Sun, Z.Z., Zuo, W.T., Zhao, L., and Xu, J.Y. (2018). Effects of Metformin Combined with Lactoferrin on Lipid Accumulation and Metabolism in Mice Fed with High-Fat Diet. Nutrients 10(11): 1628.
Morisasa, M., Sato, T., Kimura, K., Mori, T., and Goto-Inoue, N. (2019). Appli-cation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrom-etry Imaging for Food Analysis. Foods 8(12): 633.
Murfitt, S.A., Zaccone, P., Wang, X., Acharjee, A., Sawyer, Y., Koulman, A., Roberts, L.D., Cooke, A., and Griffin, J.L. (2018). Metabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Di-vergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset. J. Proteome. Res. 17(3): 946–960.
Ohgo, H., Yokoyama, H., Hirose, H., Kawabe, H., Saito, I., Tomita, K., and Hibi, T. (2009). Significance of ALT/AST ratio for specifying subjects with met-abolic syndrome in its silent stage. Diabetes Metab. Synd. 3(1): 3–6.
Park, H.M., Park, K.T., Park, E.C., Kim, S.I., Choi, M.S., Liu, K.H., and Lee, C.H. (2017). Mass Spectrometry-Based Metabolomic and Lipidomic Analy-ses of the Effects of Dietary Platycodon grandiflorum on Liver and Se-rum of Obese Mice under a High-Fat Diet. Nutrients 9(1): 71.
Pati, S., Krishna, S., Lee, J.H., Ross, M.K., de La Serre, C.B., Harn, D.A. Jr, Wag-ner, J.J., Filipov, N.M., and Cummings, B.S. (2018). Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863(1): 26–39.
Queiroz, A.L., Lessard, S.J., Ouchida, A.T., Araujo, H.N., Goncalves, D.A., Si-moes Froes Guimaraes, D.S.P., Teodoro, B.G., So, K., Espreafico, E.M., Hirshman, M.F., Alberici, L.C., Kettelhut, I.D.C., Goodyear, L.J., and Sil-veira, L.R. (2021). The MicroRNA miR-696 is regulated by SNARK and reduces mitochondrial activity in mouse skeletal muscle through Pg-c1alpha inhibition. Mol. Metab. 51: 101226.
Shah, A., Han, P., Wong, M.Y., Chang, R.C., and Legido-Quigley, C. (2019). Palmitate and Stearate are Increased in the Plasma in a 6-OHDA Model of Parkinson's Disease. Metabolites 9(2): 31.
Shen, S., Zhang, R., Zhang, J., Wei, Y., Guo, Y., Su, L., Chen, F., and Christiani, D.C. (2018). Welding fume exposure is associated with inflammation: a global metabolomics profiling study. Environ. Health 17(1): 68.
Shi, Z., Li, T., Liu, Y., Cai, T., Yao, W., Jiang, J., He, Y., and Shan, L. (2020). Hepatoprotective and Anti-Oxidative Effects of Total Flavonoids From Qu Zhi Qiao (Fruit of Citrus Paradisi cv. Changshanhuyou) on Nonalco-holic Steatohepatitis In Vivo and In Vitro Through Nrf2-ARE Signaling Pathway. Front. Pharmacol. 11: 483.
Skorkowska-Telichowska, K., Kosinska, J., Chwojnicka, M., Tuchendler, D., Tabin, M., Tuchendler, R., Bobak, L., Trziszka, T., and Szuba, A. (2016). Positive effects of egg-derived phospholipids in patients with meta-bolic syndrome. Adv. Med. Sci. 61(1): 169–174.
Stanford, K.I., Lynes, M.D., Takahashi, H., Baer, L.A., Arts, P.J., May, F.J., Lehnig, A.C., Middelbeek, R.J.W., Richard, J.J., So, K., Chen, E.Y., Gao, F., Narain, N.R., Distefano, G., Shettigar, V.K., Hirshman, M.F., Ziolo, M.T., Kiebish, M.A., Tseng, Y.H., Coen, P.M., and Goodyear, L.J. (2018). 12, 13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab. 27(5): 1111–1120. e1113.
Suliga, E., Koziel, D., Ciesla, E., Rebak, D., and Gluszek, S. (2017). Dietary Pat-terns in Relation to Metabolic Syndrome among Adults in Poland: A Cross-Sectional Study. Nutrients 9(12): 1366.
Tatsumi, Y., Nakao, Y.M., Masuda, I., Higashiyama, A., Takegami, M., Ni-shimura, K., Watanabe, M., Ohkubo, T., Okamura, T., and Miyamoto, Y. (2017). Risk for metabolic diseases in normal weight individuals with visceral fat accumulation: a cross-sectional study in Japan. BMJ Open 7(1): e013831.
Velazquez, A.M., Roglans, N., Bentanachs, R., Gene, M., Sala-Vila, A., Lazaro, I., Rodriguez-Morato, J., Sanchez, R.M., Laguna, J.C., and Alegret, M. (2020). Effects of a Low Dose of Caffeine Alone or as Part of a Green Coffee Extract, in a Rat Dietary Model of Lean Non-Alcoholic Fatty Liver Disease without Inflammation. Nutrients 12(11): 3240.
Wang, J., Wang, B., and Zhang, Y. (2020). Agonism activities of lyso-phos-phatidylcholines (LPC) Ligands binding to peroxisome proliferator-acti-vated receptor gamma (PPARγ). J. Biomol. Struct. Dyn. 38(2): 398–409.
Wymann, M.P., and Schneiter, R. (2008). Lipid signalling in disease. Nat. Rev. Mol. Cell. Biol. 9: 162–176.
Xu, M., Chattopadhyay, K., Li, J., Rai, N., Chen, Y., Hu, F., Chu, J., and Li, L. (2019). Weight Management Programme for Overweight and Obese Adults in Ningbo, China: A Feasibility Pre- and Post-intervention Study. Front. Public Health. 7: 388.
Yang, F., Chen, G., Ma, M., Qiu, N., Zhu, L., and Li, J. (2018). Egg-Yolk Sphin-gomyelin and Phosphatidylcholine Attenuate Cholesterol Absorption in Caco-2 Cells. Lipids 53(2): 217–233.
Yang, Y., Fukui, R., Jia, H., and Kato, H. (2021). Amaranth Supplementation Improves Hepatic Lipid Dysmetabolism and Modulates Gut Microbiota in Mice Fed a High-Fat Diet. Foods 10(6): 1259.
Yeboah, K., Puplampu, P., Yorke, E., Antwi, D.A., Gyan, B., and Amoah, A.G. (2016). Body composition and ankle-brachial index in Ghanaians with asymptomatic peripheral arterial disease in a tertiary hospital. BMC Obes. 3: 27.
Zhai, L., Ning, Z.W., Huang, T., Wen, B., Liao, C.H., Lin, C.Y., Zhao, L., Xiao, H.T., and Bian, Z.X. (2018). Cyclocarya paliurus Leaves Tea Improves Dys-lipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study. Front. Pharmacol. 9: 973.
Zhang, A., Sun, H., and Wang, X. (2013). Power of metabolomics in bio-marker discovery and mining mechanisms of obesity. Obes Rev. 14(4): 344–349.