Differentiation of preadipocytes into adipocytes is a major step leading to obesity. This study examines the effects of isorhamnetin, a metabolite of quercetin, at physiological and supraphysiological concentrations on the differentiation of 3T3-L1 pre-adipocyte to adipocyte. Comparison was made with the effect of quercetin on 3T3-L1 differentiation under the same conditions. Cell viability during adipocyte differentiation for 8 days in the presence of isorhamnetin and quercetin was above 94 and 97%, respectively. Oil Red O staining showed significant differences (P < 0.05) between the effect of isorhamnetin or quercetin on cytoplasmic lipid droplet accumulation and control untreated cells. Isorhamnetin at physiologically attainable concentrations was more effective than quercetin in inhibiting cytoplasmic lipid droplet accumulation. Neither isorhamnetin nor quercetin had an effect on the expression of macrophage chemoattractant protein-1 (MCP-1). CCAAT/enhancer binding protein α (C/EBP-α) was down-regulated by isorhamnetin. Compared to the control, isorhamnetin or quercetin decreased PPAR-γ 1 and 2 expressions. The data indicate that isorhamnetin was more effective than quercetin at physiologically attainable concentrations in reducing lipid accumulation in 3T3-L1 pre-adipocytes.
Boulton, D.W., Walle, U.K., and Walle, T. (1999). Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism. J. Pharm. Pharmacol. 51(3): 353–359.
Christensen, K.B., Petersen, R.K., Kristiansen, K., and Christensen, L.P. (2010). Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) γ. Phytother. Res. 24(S2): S129–S132.
Christy, R.J., Kaestner, K.H., Geiman, D.E., and Lane, M.D. (1991). CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. U S A 88(6): 2593–2597.
Cristancho, A.G., and Lazar, M.A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12(11): 722–734.
Dajas, F. (2012). Life or death: neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 143(2): 383–396.
Dixon Clarke, S.E., and Ramsay, R.R. (2011). Dietary inhibitors of monoamine oxidase A. . J. Neural. Transm. 118(7): 1031–1041.
Egert, S., Wolffram, S., Bosy-Westphal, A., Boesch-Saadatmandi, C., Wagner, A.E., Frank, J., Rimbach, G., and Mueller, M.J. (2008). Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J. Nutr. 138(9): 1615–1621.
Ejaz, A., Wu, D., Kwan, P., and Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 139(5): 919–925.
Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24(10): 851–874.
Fujimori, K., and Shibano, M. (2013). Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPalpha-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J. Agric. Food Chem. 61(21): 5139–5147.
Gregoire, F.M., Smas, C.M., and Sul, H.S. (1998). Understanding adipocyte differentiation. Physiol. Rev. 78(3): 783–809.
Harwood, M., Danielewska-Nikiel, B., Borzelleca, J.F., Flamm, G.W., Williams, G.M., and Lines, T.C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 45(11): 2179–2205.
Hertog, M.G.L., Hollman, P.C.H., Katan, M.B., and Kromhout, D. (1993). Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer 20(1): 21–29.
Hollman, P.C., de Vries, J.H., van Leeuwen, S.D., Mengelers, M.J., and Katan, M.B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62(6): 1276–1282.
Jiang, H., Yamashita, Y., Nakamura, A., Croft, K., and Ashida, H. (2019). Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci. Rep. 9(1): 2690.
Ju, J.H., Yoon, H.S., Park, H.J., Kim, M.Y., Shin, H.K., Park, K.Y., Yang, J.O., Sohn, M.S., and Do, M.S. (2011). Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J. Med. Food 14(10): 1097–1106.
Kanda, K., Nishi, K., Kadota, A., Nishimoto, S., Liu, M.-C., and Sugahara, T. (2012). Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction. Biochim. Biophys. Acta 1820(4): 461–468.
Kennell, J.A., and MacDougald, O.A. (2005). Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J. Biol. Chem. 280(25): 24004–24010.
Kim, H.K., Kim, J.N., Han, S.N., Nam, J.H., Na, H.N., and Ha, T.J. (2012). Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr. Res. 32(10): 770–777.
Kong, C.-S., Lee, J.I., Kim, Y.A., Kim, J., Bak, S.S., Hong, J.W., Park, H.Y., Yea, S.S., and Seo, Y. (2012). Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. . Process Biochem. 47(7): 1073–1078.
Kuroyanagi, K., Kang, M.S., Goto, T., Hirai, S., Ohyama, K., Kusudo, T., Yu, R., Yano, M., Sasaki, T., Takahashi, N., and Kawada, T. (2008). Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 366(1): 219–225.
Lee, J., Jung, E., Lee, J., Kim, S., Huh, S., Kim, Y., Kim, Y., Byun, S.Y., Kim, Y.S., and Park, D. (2009). Isorhamnetin Represses Adipogenesis in 3T3-L1 Cells. Obesity 17(2): 226–232.
Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81(1): 230S–242S.
Nicholson, S.K., Tucker, G.A., and Brameld, J.M. (2010). Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br. J. Nutr. 103(10): 1398–1403.
Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72: 219–246.
Pandey, A.K., Patnaik, R., Muresanu, D.F., Sharma, A., and Sharma, H.S. (2012). Quercetin in hypoxia-induced oxidative stress: novel target for neuroprotection. Int. Rev. Neurobiol. 102: 107–146.
Prestwich, T.C., and Macdougald, O.A. (2007). Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr. Opin. Cell Biol. 19(6): 612–617.
Ramachandran, L., Manu, K.A., Shanmugam, M.K., Li, F., Siveen, K.S., Vali, S., Kapoor, S., Abbasi, T., Surana, R., Smoot, D.T., Ashktorab, H., Tan, P., Ahn, K.S., Yap, C.W., Kumar, A.P., and Sethi, G. (2012). Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor gamma activation pathway in gastric cancer. J. Biol. Chem. 287(45): 38028–38040.
Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L., and MacDougald, O.A. (2000). Inhibition of adipogenesis by Wnt signaling. Science 289(5481): 950–953.
Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., and Russo, G.L. (2012). The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 83(1): 6–15.
Sartipy, P., and Loskutoff, D.J. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl. Acad. Sci. U S A 100(12): 7265–7270.
Tateya, S., Tamori, Y., Kawaguchi, T., Kanda, H., and Kasuga, M. (2010). An increase in the circulating concentration of monocyte chemoattractant protein-1 elicits systemic insulin resistance irrespective of adipose tissue inflammation in mice. Endocrinology 151(3): 971–979.
Vargas, A.J., and Burd, R. (2010). Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev. 68(7): 418–428.
Winterbone, M.S., Tribolo, S., Needs, P.W., Kroon, P.A., and Hughes, D.A. (2009). Physiologically relevant metabolites of quercetin have no effect on adhesion molecule or chemokine expression in human vascular smooth muscle cells. Atherosclerosis 202(2): 431–438.
Yan, X., Murphy, B.T., Hammond, G.B., Vinson, J.A., and Neto, C.C. (2002). Antioxidant Activities and Antitumor Screening of Extracts from Cranberry Fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 50(21): 5844–5849.
Yang, J.-Y., Della-Fera, M.A., Rayalam, S., Ambati, S., Hartzell, D.L., Park, H.J., and Baile, C.A. (2008). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. 82(19–20): 1032–1039.
Yang, L., Li, X.-F., Gao, L., Zhang, Y.-O., and Cai, G.-P. (2012). Suppressive Effects of Quercetin-3-O-(6″-Feruloyl)-β-D-Galactopyranoside on Adipogenesis in 3T3-L1 Preadipocytes Through Down-regulation of PPARγ and C/EBPα Expression. Phytother. Res. 26(3): 438–444.
Yen, G.-C., Chen, Y.-C., Chang, W.-T., and Hsu, C.-L. (2010). Effects of Polyphenolic Compounds on Tumor Necrosis Factor-α (TNF-α)-Induced Changes of Adipokines and Oxidative Stress in 3T3-L1 Adipocytes. J. Agric. Food Chem. 59(2): 546–551.
Zebisch, K., Voigt, V., Wabitsch, M., and Brandsch, M. (2012). Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 425(1): 88–90.