PDF (2.1 MB)
Collect
Submit Manuscript
Review | Open Access

Fate of dietary phytochemicals in human gut and interaction with intestinal flora

Bin Dua,#Zilong Maa,#Guang XinbYuedong Yanga()Baojun Xuc()
Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
Food Science and Technology Program, BNU–HKBU United International College, Zhuhai, Guangdong 519087, China

#These authors contributed equally to this study.

Show Author Information

Abstract

With the deterioration of the environment and the improvement of human self-protection awareness, the voice of human beings for returning to nature is increasing. There is an increasing interest in regulating the composition and metabolic function of the gastrointestinal microbial community with natural plant diet methods to improve health and prevent or treat diseases. As the "invisible organ" of human beings, the intestinal flora is closely related to human health. Dysbacteriosis can induce a variety of diseases. The regulatory effect of natural plant ingredients on the intestinal flora is expected to be a new treatment for related diseases. The metabolic mechanism of several main components of natural plants in the human body and their influence on the intestinal flora were presented in this paper. Meanwhile, the mechanism of action of intestinal flora in several typical diseases was introduced. In addition, this paper gathered and analyzed previous studies in order to gain insight how plant components can improve diseases by regulating intestinal flora.

References

 

Al-Attas, O.S., Al-Daghri, N.M., Al-Rubeaan, K., Da Silva, N.F., Sabico, S.L., Kumar, S., McTernan, P.G., and Harte, A.L. (2009). Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc. Diabetol. 8: 20.

 

An, Y., Li, Y., Wang, X., Chen, Z., Xu, H., Wu, L., Li, S., Wang, C., Luan, W., Wang, X., Liu, M., Tang, X., and Yu, L. (2018). Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids Health Dis. 17(1): 276.

 

Appeldoorn, M.M., Vincken, J.P., Gruppen, H., and Hollman, P.C. (2009). Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J. Nutr. 139(8): 1469–1473.

 

Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-bacterial mutualism in the human intestine. Science 307(5717): 1915–1920.

 

Blachier, F., Mariotti, F., Huneau, J.F., and Tomé, D. (2007). Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino. Acids. 33(4): 547–562.

 

Bos, C., Juillet, B., Fouillet, H., Turlan, L., Daré, S., Luengo, C., N'tounda, R., Benamouzig, R., Gausserès, N., Tomé, D., and Gaudichon, C. (2005). Postprandial metabolic utilization of wheat protein in humans. Am. J. Clin. Nutr. 81(1): 87–94.

 

Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Boneca, I.G., and Eberl, G. (2008). Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221): 507–510.

 

Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F.J., and Queipo-Ortuño, M.I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24(8): 1415–1422.

 

Carmody, R.N., Gerber, G.K., Luevano, J.M. Jr, Gatti, D.M., Somes, L., Svenson, K.L., and Turnbaugh, P.J. (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1): 72–84.

 

Cash, H.L., Whitham, C.V., Behrendt, C.L., and Hooper, L.V. (2006). Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790): 1126–1130.

 

Chambers, E.S., Viardot, A., Psichas, A., Morrison, D.J., Murphy, K.G., ZacVarghese, S.E., MacDougall, K., Preston, T., Tedford, C., Finlayson, G.S., Blundell, J.E., Bell, J.D., Thomas, E.L., Mt-Isa, S., Ashby, D., Gibson, G.R., Kolida, S., Dhillo, W.S., Bloom, S.R., Morley, W., Clegg, S., and Frost, G. (2015). Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11): 1744–1754.

 

Chang, P.V., Hao, L., Offermanns, S., and Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U S A 111(6): 2247–2252.

 

Conterno, L., Fava, F., Viola, R., and Tuohy, K.M. (2011). Obesity and the gut microbiota: Does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr. 6(3): 241–260.

 

Crouse, J.R., Gerson, C.D., DeCarli, L.M., and Lieber, C.S. (1968). Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J. Lipid. Res. 9(4): 509–512.

 

Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P., and Macfarlane, G.T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10): 1221–1227.

 

Cummings, J.H. (1981). Short chain fatty acids in the human colon. Gut 22(9): 763–779.

 

Dai, Z.L., Wu, G., and Zhu, W.Y. (2011). Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci. (Landmark Ed) 16: 1768–1786.

 

Dalile, B., Van Oudenhove, L., Vervliet, B., and Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16(8): 461–478.

 

Davila, A.M., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P.H., Sanz, Y., and Tomé, D. (2013). Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res. 68(1): 95–107.

 

Del Rio, D., Borges, G., and Crozier, A. (2010). Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr. 104(Suppl 3): S67–90.

 

De Vos, W.M., and de Vos, E.A. (2012). Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70(Suppl 1): S45–56.

 

De Vos, W.M., and Nieuwdorp, M. (2013). Genomics: A gut prediction. Nature 498(7452): 48–49.

 

Evenepoel, P., Claus, D., Geypens, B., Hiele, M., Geboes, K., Rutgeerts, P., and Ghoos, Y. (1999). Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am. J. Physiol. 277(5): G935–943.

 

Fan, P., Liu, P., Song, P., Chen, X., and Ma, X. (2017). Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 7: 43412.

 

Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T.M., and Comelli, E.M. (2014). Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4(6): e121.

 

Foley, M.H., Cockburn, D.W., and Koropatkin, N.M. (2016). The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol. Life Sci. 73(14): 1–15.

 

Freestone, P.P., Walton, N.J., Haigh, R.D., and Lyte, M. (2007). Influence of dietary catechols on the growth of enteropathogenic bacteria. Int. J. Food Microbiol. 119(3): 159–169.

 

Fung, K.Y., Cosgrove, L., Lockett, T., Head, R., and Topping, D.L. (2012). A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 108(5): 820–831.

 

González, J.E., and Keshavan, N.D. (2006). Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70(4): 859–75.

 

Gross, G., Jacobs, D.M., Peters, S., Possemiers, S., van Duynhoven, J., Vaughan, E.E., and van de Wiele, T. (2010). In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem. 58(18): 10236–10246.

 

Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223): 543–546.

 

Hamer, H.M., De Preter, V., Windey, K., and Verbeke, K. (2012). Functional analysis of colonic bacterial metabolism: relevant to health? Am. J. Physiol. Gastrointest. Liver Physiol. 302(1): G1–9.

 

Hapfelmeier, S., Lawson, M.A., Slack, E., Kirundi, J.K., Stoel, M., Heikenwalder, M., Cahenzli, J., Velykoredko, Y., Balmer, M.L., Endt, K., Geuking, M.B., Curtiss, R. 3rd, McCoy, K.D., and Macpherson, A.J. (2010). Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986): 1705–1709.

 

Hara, H., Orita, N., Hatano, S., Ichikawa, H., Hara, Y., Matsumoto, N., Kimura, Y., Terada, A., and Mitsuoka, T. (1995). Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. J. Vet. Med. Sci. 57(1): 45–49.

 

Haslam, E., Lilley, T.H., Warminski, E., Liao, H., and Luck, G. (1992). Polyphenol complexation: A study in molecular recognition. Phenolic Compounds in Food & Their Effects on Health analysis. Occurr. & Chem. 506: 8–50.

 

Hervert-Hernandez, D., and Goni, I. (2011). Dietary polyphenols and human gut microbiota: A review. Food Rev. Int. 27(2): 154–169.

 

Hippe, B., Zwielehner, J., Liszt, K., Lassl, C., Unger, F., and Haslberger, A.G. (2011). Quantification of butyryl CoA: acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol. Lett. 316(2): 130–135.

 

Huber, B., Eberl, L., Feucht, W., and Polster, J. (2003). Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. C J. Biosci. 58(11-12): 879–884.

 

Kashtanova, D.A., Popenko, A.S., Tkacheva, O.N., Tyakht, A.V., and Boytsov, S.A. (2016). Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 32(6): 620–627.

 

Kemperman, R.A., Bolca, S., Roger, L.C., and Vaughan, E.E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology (Reading) 156(Pt 11): 3224–3231.

 

Kim, E.J., Kim, S.H., Park, G.E., Kang, B.J., Song, B.J., Kim, Y.J., Lee, D., Ahn, H., Kim, I., Son, Y.H., and Grimm, R. (2015). Histogram analysis of apparent diffusion coefficient at 3.0t: Correlation with prognostic factors and subtypes of invasive ductal carcinoma. J. Magn. Reson. Imaging 42(6): 1666–1678.

 

Kim, N., Yun, M., Oh, Y.J., and Choi, H.J. (2018). Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. J. Microbiol. 56(3): 172–182.

 

Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H., and Tsujimoto, G. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4: 1829.

 

Knight, D.J., and Girling, K.J. (2003). Gut flora in health and disease. Lancet 361(9371): 512–519.

 

Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V., Gavalko, Y., Dorofeyev, A., Romanenko, M., Tkach, S., Sineok, L., Lushchak, O., and Vaiserman, A. (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 17(1): 120.

 

Koropatkin, N.M., Cameron, E.A., and Martens, E.C. (2012). How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10(5): 323–335.

 

Kostic, A.D., Xavier, R.J., and Gevers, D. (2014). The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 146(6): 1489–1499.

 

Kowalska, K., and Olejnik, A. (2016). Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care. 19(6): 446–452.

 

Latif, R., Mumtaz, S., Al Sheikh, M.H., Chathoth, S., and Nasser Al Naimi, S. (2021). Effects of turmeric on cardiovascular risk factors, mental health, and serum homocysteine in overweight, obese females. Altern. Ther. Health Med. 27(S1): 114–119.

 

LeBlanc, J.G., Chain, F., Martín, R., Bermúdez-Humarán, L.G., Courau, S., and Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16(1): 79.

 

Luis, A.S., Briggs, J., Zhang, X., Farnell, B., Ndeh, D., Labourel, A., Baslé, A., Cartmell, A., Terrapon, N., Stott, K., Lowe, E.C., McLean, R., Shearer, K., Schückel, J., Venditto, I., Ralet, M.C., Henrissat, B., Martens, E.C., Mosimann, S.C., Abbott, D.W., and Gilbert, H.J. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3(2): 210–219.

 

Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., and Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63(8): 1275–1283.

 

Mahowald, M.A., Rey, F.E., Seedorf, H., Turnbaugh, P.J., Fulton, R.S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R.K., Cantarel, B.L., Coutinho, P.M., Henrissat, B., Crock, L.W., Russell, A., Verberkmoes, N.C., Hettich, R.L., and Gordon, J.I. (2009). Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U S A 106(14): 5859–5864.

 

Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., Wang, T., Luo, L., Wang, C., Wang, T., and Zhao, B. (2019). Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed. Pharmacother. 117: 109138.

 

Martens, E.C., Lowe, E.C., Chiang, H., Pudlo, N.A., Wu, M., McNulty, N.P., Abbott, D.W., Henrissat, B., Gilbert, H.J., Bolam, D.N., and Gordon, J.I. (2011). Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9(12): e1001221.

 

Ma, X., Fan, P.X., Li, L.S., Qiao, S.Y., Zhang, G.L., and Li, D.F. (2012). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci. 90(Suppl 4): 266–268.

 

Morowitz, M.J., Carlisle, E.M., and Alverdy, J.C. (2011). Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg. Clin. North Am. 91(4): 771–785, ⅷ.

 

Nicolucci, A.C., Hume, M.P., Martínez, I., Mayengbam, S., Walter, J., and Reimer, R.A. (2017). Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153(3): 711–722.

 

O'Hara, A.M., and Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Rep. 7(7): 688–693.

 

Ortiz, L.M., Lombardi, P., Tillhon, M., and Scovassi, A.I. (2014). Berberine, an epiphany against cancer. Molecules 19(8): 12349–12367.

 

Pascal, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela, E., Sarrabayrouse, G., Machiels, K., Vermeire, S., Sokol, H., Guarner, F., and Manichanh, C. (2017). A microbial signature for Crohn's disease. Gut 66(5): 813–822.

 

Peng, M., Bitsko, E., and Biswas, D. (2015). Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens. J. Food Sci. 80(3): M635–641.

 

Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F., Kibbey, R.G., Goodman, A.L., and Shulman, G.I. (2016). Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534(7606): 213–217.

 

Phan, M.A.T., Paterson, J., Bucknall, M., and Arcot, J. (2018). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 58(8): 1310–1329.

 

Pokusaeva, K., Fitzgerald, G.F., and van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6(3): 285–306.

 

Qin, J., Li, R., Raes, J., Arumugam, R., Burgdorf, K.S., and Al, E. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.

 

Reichardt, N., Vollmer, M., Holtrop, G., Farquharson, F.M., Wefers, D., Bunzel, M., Duncan, S.H., Drew, J.E., Williams, L.M., Milligan, G., Preston, T., Morrison, D., Flint, H.J., and Louis, P. (2018). Specific substratedriven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 12(2): 610–622.

 

Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrient 11(10): 2393.

 

Robles Alonso, V., and Guarner, F. (2013). Linking the gut microbiota to human health. Br. J. Nutr. 109(S2): S21–S26.

 
Rothwell, J.A., Urpi-Sarda, M., Boto-Ordoñez, M., Knox, C., Llorach, R., Eisner, R., Cruz, J., Neveu, V., Wishart, D., Manach, C., Andres-Lacueva, C., and Scalbert, A. (2012). Phenol-explorer 2.0: a major update of the phenol-explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database (Oxford) 2012: bas031.
 

Ruppin, H., Bar-Meir, S., Soergel, K.H., Wood, C.M., and Schmitt, M.G. Jr (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology 78(6): 1500–1507.

 

Scott, K.P., Martin, J.C., Duncan, S.H., and Flint, H.J. (2014). Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol. 87(1): 30–40.

 

Sharma, M., Li, Y., Stoll, M.L., and Tollefsbol, T.O. (2020). The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet. 10: 1329.

 

Shepherd, E.S., Deloache, W.C., Pruss, K.M., Whitaker, W.R., and Sonnenburg, J.L. (2018). An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557(7705): 434.

 

Singh, R.P. (2019). Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl. Microbiol. Biotechnol. 103(18): 7287–7315.

 

Smith, A.H., Zoetendal, E., and Mackie, R.I. (2005). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 50(2): 197–205.

 

Song, Z.M., Liu, F., Chen, Y.M., Liu, Y.J., Wang, X.D., and Du, S.Y. (2019). CTGF-mediated ERK signaling pathway influences the inflammatory factors and intestinal flora in ulcerative colitis. Biomed. Pharmacother. 111: 1429–1437.

 

Talman, A.M., Clain, J., Duval, R., Ménard, R., and Ariey, F. (2019). Artemisinin Bioactivity and Resistance in Malaria Parasites. Trends Parasitol. 35(12): 953–963.

 

Tancula, E., Feldhaus, M.J., Bedzyk, L.A., and Salyers, A.A. (1992). Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J. Bacteriol. 174(17): 5609–5616.

 

Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants (Basel) 5(2): 13.

 

Tsukumo, D.M., Carvalho, B.M., Carvalho-Filho, M.A., and Saad, M.J. (2009). Translational research into gut microbiota: New horizons in obesity treatment. Arq. Bras. Endocrinol. Metabol. 53(2): 139–144.

 

Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., Louis, P., McIntosh, F., Johnstone, A.M., Lobley, G.E., Parkhill, J., and Flint, H.J. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5(2): 220–230.

 

Wu, F., Zhi, X., Xu, R., Liang, Z., Wang, F., Li, X., Li, Y., and Sun, B. (2020). Exploration of microRNA profiles in human colostrum. Ann. Transl. Med. 8(18): 1170.

 

Xuelian, H. (2014). Progress in anti-tumor research on resveratrol and its derivatives and analogues. Chem. Indus. and Engineer Progress 33(06): 1526–1532.

 

Xu, J., Lian, F., Zhao, L., Zhao, Y., Chen, X., Zhang, X., Guo, Y., Zhang, C., Zhou, Q., Xue, Z., Pang, X., Zhao, L., and Tong, X. (2015). Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 9(3): 552–562.

 

Zaibi, M.S., Stocker, C.J., O'Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M.A., Brown, A.J., Smith, D.M., and Arch, J.R. (2010). Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584(11): 2381–2386.

 

Zhao, J., Zhang, X., Liu, H., Brown, M.A., and Qiao, S. (2019). Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20(2): 145–154.

 

Zhilu, X.U., Yang, K., Zhang, J., Zuo, T., Chevarin, C., Chu, L.C., Chan, F.K., Sung, J.J., Yu, J., and Barnich, N. (2019). Tu1850 – adherent-invasive Escherichia coli in inflammatory bowel disease impacts fecal microbiota transplantation efficacy by hindering engraftment of beneficial bacteria. Gastroenterology 156(6): S–1147.

Journal of Food Bioactives
Pages 43-51
Cite this article:
Du B, Ma Z, Xin G, et al. Fate of dietary phytochemicals in human gut and interaction with intestinal flora. Journal of Food Bioactives, 2022, 18: 43-51. https://doi.org/10.31665/JFB.2022.18307
Metrics & Citations  
Article History
Copyright
Return