PDF (1.3 MB)
Collect
Submit Manuscript
Review | Open Access

Effect of processing on the preservation of bioactive compounds in traditional and exotic fruits: a review

Fereidoon Shahidi()Renan DanielskiGrasiela Rocha Barros da Silva
Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7
Show Author Information

Abstract

Bioactives are natural substances that may function as antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic agents. They include phenolic compounds, carotenoids, and vitamins that can exert health-promoting effects. Conventional fruit processing (e.g., heat treatment) can negatively affect the content and possibly the integrity of bioactives in the source material. Meanwhile, non-conventional techniques, such as high pressure processing and pulsed electric field, may increase the extractability of bioactives from the food matrix and enhance their availability for intestinal absorption. Although berries are usually perceived as outstanding sources of antioxidants, other conventional fruits also stand out, such as apple, banana, grape, mango, and orange. Nevertheless, exotic fruits, such as Buriti, mamey, açaí, pitanga, camapu, and tucumã are less frequently consumed, even though they can provide relevant bioactives. Additionally, fruit processing generates by-products containing high-value bioactives that can re-enter the industry cycle while minimizing the quantity of waste generated. Future studies should further examine the potential of exotic fruits using their discarded portions. Thus, identifying the best techniques for their use and maximum phytochemical extraction would be essential to reducing their environmental impact. Additionally, novel functional foods and nutraceuticals can be obtained by exploring the bioactive potential of these feedstocks and their processing discards.

References

 

Ali, M., Imran, M., Nadeem, M., Khan, M.K., Sohaib, M., Suleria, H.A.R., and Bashir, R. (2019). Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant − based polyphenolic optimal extracts. Lipids Health Dis. 18(1): 1–16.

 

Alqurashi, R.M., Alarifi, S.N., Walton, G.E., Costabile, A.F., Rowland, I.R., and Commane, D.M. (2017). In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem. 234: 190–198.

 

Ambigaipalan, P., de Camargo, A.C., and Shahidi, F. (2016). Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 64(34): 6584–6604.

 

Amran, M.S., Sultan, M.Z., Rahman, A., and Rashid, M.A. (2013). Antidiabetic activity of compounds isolated from the kernel of Mangifera indica in alloxan induced diabetic rats. Dhaka Univ. J. Pharm. Sci. 12(1): 77–81.

 

Anyasi, T.A., Jideani, A.I.O., and Mchau, G.R.A. (2013). Functional Properties and Postharvest Utilization of Commercial and Noncommercial Banana Cultivars. Compr. Rev. Food Sci. 12(5): 509–522.

 

Armelle, P., Audrey, V., Genica, L., Sandra, A., Katia, R., and Louis, F. (2022). Nutritional characteristics and phenolic compounds of ripe fruit pulp from six accessions of Mammea americana L. Int. J. Agric. Sci. Food Technol. 8: 033–037.

 

Arts, I.C., van de Putte, B., and Hollman, P.C. (2000). Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 48(5): 1746–1751.

 

Barba, F.J., Cortés, C., Esteve, M.J., and Frígola, A. (2012). Study of antioxidant capacity and quality parameters in an orange juice-milk beverage after high-pressure processing treatment. Food Bioproc. Tech. 5(6): 2222–2232.

 

Barbosa, J.R., and de Carvalho Júnior, R.N. (2022). Food sustainability trends-How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends Food Sci. Technol. 124: 86–95.

 

Barbosa, J., Borges, S., Amorim, M., Pereira, M.J., Oliveira, A., Pintado, M.E., and Teixeira, P. (2015). Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. J. Funct. Foods 17: 340–351.

 

Barrett, D.M., Somogyi, L.P., and Ramaswamy, H.S. (2005). Processing fruits: Science and technology. (2nd ed.). CRC Press, Boca Raton.

 

Barrón-García, O.Y., Morales-Sánchez, E., Jiménez, A.R., Antunes-Ricardo, M., Luzardo-Ocampo, I., González-Jasso, E., and Gaytán-Martínez, M. (2022). Phenolic compounds profile and antioxidant capacity of 'Ataulfo' mango pulp processed by ohmic heating at moderate electric field strength. Food Res. Int. 154: 111032.

 

Bashmil, Y.M., Ali, A., Bk, A., Dunshea, F.R., and Suleria, H.A. (2021). Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants 10(10): 1521.

 

Bennett, L.E., Jegasothy, H., Konczak, I., Frank, D., Sudharmarajan, S., and Clingeleffer, P.R. (2011). Total polyphenolics and anti-oxidant properties of selected dried fruits and relationships to drying conditions. J. Funct. Foods 3(2): 115–124.

 

Bennett, R.N., Shiga, T.M., Hassimotto, N.M.A., Rosa, E.A.S., Lajolo, F.M., and Cordenunsi, B.R. (2010). Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. J. Agr. Food Chem. 58(13): 7991–8003.

 

Berni, P., Pinheiro, A.C., Bourbon, A.I., Guimarães, M., Canniatti-Brazaca, S.G., and Vicente, A.A. (2020). Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) during microemulsion production and in a dynamic gastrointestinal system. J. Food Sci. Technol. 57(2): 650–662.

 

Bode, A.M., Cunningham, L., and Rose, R.C. (1990). Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin. Chem. 36(10): 1807–1809.

 

Brown, J.E., Khodr, H., Hider, R.C., and Rice-Evans, C.A. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem. J. 330: 1173–1178.

 

Cabral, F.L., Bernardes, V.M., Passos, D.F., de Oliveira, J.S., Doleski, P.H., Silveira, K.L., Horvarth, M.C., Bremm, J.M., Barbisan, F., Azzolin, V.F., Teixeira, C.F., de Andrade, C.M., da Cruz, I.B.M., Ribeiro, E.E., and Leal, D.B.R. (2020). Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. J. Ethnopharmacol. 247: 112274.

 

Cádiz-Gurrea, M.D.L.L., Borrás-Linares, I., Lozano-Sánchez, J., Joven, J., Fernández-Arroyo, S., and Segura-Carretero, A. (2017). Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. Int. J. Mol. Sci. 18(2): 376.

 

Cândido, T.L.N., Silva, M.R., and Agostini-Costa, T.S. (2015). Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa Lf) from the Cerrado and Amazon biomes. Food Chem. 177: 313–319.

 

Cantwell, M. (2013). Fresh-cut Fruit and Vegetables. Postharvest Short Course.

 

Carvalho, A.V., Ferreira Ferreira da Silveira, T., Mattietto, R.D.A., Padilha de Oliveira, M.D.S., and Godoy, H.T. (2017). Chemical composition and antioxidant capacity of açaí (Euterpe oleracea) genotypes and commercial pulps. J. Sci. Food Agric. 97(5): 1467–1474.

 

Chang, S.K., Alasalvar, C., and Shahidi, F. (2019). Superfruits: Phytochemicals, antioxidant efficacies, and health effects–A comprehensive review. Crit. Rev. Food Sci. Nutr. 59(10): 1580–1604.

 

Clark, S., Costello, M., Drake, M., and Bodyfelt, F. (2009). Sensory Evaluation of Dairy Products. (1st ed.). Springer, New York.

 

Corrales, M., Toepfl, S., Butz, P., Knorr, D., and Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. IFSET 9(1): 85–91.

 

da Fonseca Machado, A.P., do Nascimento, R.D.P., da Rocha Alves, M., Reguengo, L.M., and Junior, M.R.M. (2021). Brazilian tucumã-do-Amazonas (Astrocaryum aculeatum) and tucumã-do-Pará (Astrocaryum vulgare) fruits: bioactive composition, health benefits, and technological potential. Food Res. Int. 151: 110902.

 

Dantas, A.M., Batista, J.D.F., dos Santos Lima, M., Fernandes, F.A., Rodrigues, S., Magnani, M., and Borges, G.D.S.C. (2021). Effect of cold plasma on açai pulp: Enzymatic activity, color and bioaccessibility of phenolic compounds. LWT 149: 111883.

 

Dar, J.A., Wani, A.A., Ahmed, M., Nazir, R., Zargar, S.M., and Javaid, K. (2019). Peel colour in apple (Malus× domestica Borkh.): An economic quality parameter in fruit market. Sci. Hortic. 244: 50–60.

 

da Silveira, T.F.F., Cristianini, M., Kuhnle, G.G., Ribeiro, A.B., Teixeira Filho, J., and Godoy, H.T. (2019). Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. IFSET 55: 88–96.

 

de Ancos, B., Sánchez-Moreno, C., Zacarías, L., Rodrigo, M.J., Sáyago Ayerdí, S., Blancas Benítez, F.J., Domínguez Avila, J.A., and González-Aguilar, G.A. (2018). Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of 'Ataulfo' mango by-products. J. Food Meas. Charact 12(3): 2145–2157.

 

De Ancos, B., Rodrigo, M.J., Sánchez-Moreno, C., Cano, M.P., and Zacarías, L. (2020). Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges 'Navel' and the red-fleshed 'Cara Cara'. Food Res. Int. 132: 109105.

 

de Freitas Santos, P.D., Rubio, F.T.V., de Carvalho Balieiro, J.C., Thomazini, M., and Favaro-Trindade, C.S. (2021). Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT 143: 111106.

 

Del Pozo-Insfran, D., Percival, S.S., and Talcott, S.T. (2006). Açaí (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J. Agr. Food Chem. 54(4): 1222–1229.

 

de Oliveira, A.M., Malunga, L.N., Perussello, C.A., Beta, T., and Ribani, R.H. (2020). Phenolic acids from fruits of Physalis angulata L. in two stages of maturation. S. Afr. J. Bot. 131: 448–453.

 

de Pascual-Teresa, S., Santos-Buelga, C., and Rivas-Gonzalo, J.C. (2000). Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agr. Food Chem. 48(11): 5331–5337.

 

de Rosso, V.V., and Mercadante, A.Z. (2007). Identification and Quantification of Carotenoids, By HPLC-PDA-MS/MS, from Amazonian Fruits. J. Agric. Food Chem. 55(13): 5062–5072.

 

Devatkal, S.K., Kumboj, R., and Paul, D. (2014). Comparative antioxidant effect of BHT and water extracts of banana and sapodilla peels in raw poultry meat. J. Food Sci. Technol. 51(2): 387–391.

 

Dorman, H.J., and Deans, S.G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2): 308–316.

 

Durgadevi, P.K.S., Saravanan, A., and Uma, S. (2019). Antioxidant potential and antitumour activities of Nendran banana peels in breast cancer cell line. Indian J. Pharm. Sci. 81(3): 464–473.

 

Dziadek, K., Kopeć, A., Dróżdż, T., Kiełbasa, P., Ostafin, M., Bulski, K., and Oziembłowski, M. (2019). Effect of pulsed electric field treatment on shelf-life and nutritional value of apple juice. J. Food Sci. Technol. 56(3): 1184–1191.

 

Ellong, E.N., Billard, C., Adenet, S., and Rochefort, K. (2015). Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutr. Sci. 6(03): 299.

 

Fang, S.H., Rao, Y.K., and Tzeng, Y.M. (2005). Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg. Med. Chem. 13(7): 2381–2388.

 
FAO. (1994). Definition and classification of commodities. http://www.fao.org/es/faodef/fdef08e.htm. Accessed 30 May 2022.
 
FAO. (2020). Crop Worldwide [Statistical]. Food and Agriculture Organization of the United Nation. http://https://www.fao.org/faostat/en/#data/QCL. Accessed 24 Jun 2022.
 

Farag, M.A., Abib, B., Ayad, L., and Khattab, A.R. (2020). Sweet and bitter oranges: an updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chem. 331: 127306.

 

Farias, T.R., Rodrigues, S., and Fernandes, F.A. (2020). Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Res. Int. 136: 109617.

 

Feng, S., Yi, J., Li, X., Wu, X., Zhao, Y., Ma, Y., and Bi, J. (2021). Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. J. Agric. Food Chem. 69(1): 7–27.

 

Fernández-Jalao, I., Balderas, C., Sánchez-Moreno, C., and De Ancos, B. (2020). Impact of an in vitro dynamic gastrointestinal digestion on phenolic compounds and antioxidant capacity of apple treated by high-pressure processing. IFSET 66: 102486.

 

Fidelis, E.M., Savall, A.S.P., de Oliveira Pereira, F., Quines, C.B., Ávila, D.S., and Pinton, S. (2022). Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. Arab. J. Chem. 15(4): 103691.

 

Filho, L.G., De Rosso, V.V., Meireles, M.A.A., Rosa, P.T., Oliveira, A.L., Mercadante, A.Z., and Cabral, F.A. (2008). Supercritical CO2 extraction of carotenoids from pitanga fruits (Eugenia uniflora L.). J. Supercrit. Fluids 46(1): 33–39.

 

Gil, M.I., Aguayo, E., and Kader, A.A. (2006). Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. J. Agric. Food Chem. 54(12): 4284–4296.

 

Gomes, A., Costa, A.L.R., Rodrigues, P.D., de Castro, R.J.S., and Silva, E.K. (2022). Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability. Food Control 131: 108391.

 

González-Peña, M.A., Lozada-Ramírez, J.D., and Ortega-Regules, A.E. (2021). Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. Biochem. Biophys. Rep. 26: 100989.

 

Guaadaoui, A., Benaicha, S., Elmajdoub, N., Bellaoui, M., and Hamal, A. (2014). What is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. Int. J. Nutr. Food Sci. 3(3): 174.

 

Guiné, R.P., Gonçalves, F.J., Oliveira, S.F., and Correia, P.M. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. Int. J. Fruit Sci. 20: S470–S490.

 

Hamacek, F.R., Della Lucia, C.M., Silva, B.P.D., Moreira, A.V.B., and Pinheiro-Sant'ana, H.M. (2018). Buriti of the cerrado of Minas Gerais, Brazil: physical and chemical characterization and content of carotenoids and vitamins. Food Sci. Technol. 38: 263–269.

 

Harnly, J.M., Doherty, R.F., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Bhagwat, S., and Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem. 54(26): 9966–9977.

 

Harris, G.K., Qian, Y., Leonard, S.S., Sbarra, D.C., and Shi, X. (2006). Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr. 136(6): 1517–1521.

 

Howard, L.A., Wong, A.D., Perry, A.K., and Klein, B.P. (1999). Β-Carotene and Ascorbic Acid Retention in Fresh and Processed Vegetables. J. Food Sci. 64(5): 929–936.

 

Hung, L., Horagai, Y., Kimura, Y., and Adachi, S. (2007). Decomposition and discoloration of L-ascorbic acid freeze-dried with saccharides. IFSET 8: 500–506.

 

Jantsch, M.H., Bernardes, V.M., Oliveira, J.S., Passos, D.F., Dornelles, G.L., Manzoni, A.G., Cabral, F.L., da Silva, J., Schetinger, M., and Leal, D. (2021). Tucumã (Astrocaryum aculeatum) prevents memory loss and oxidative imbalance in the brain of rats with hyperlipidemia. J. Food Biochem. 45(4): e13636.

 

Kalinowska, M., Bielawska, A., Lewandowska-Siwkiewicz, H., Priebe, W., and Lewandowski, W. (2014). Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 84: 169–188.

 

Kanazawa, K., and Sakakibara, H. (2000). High Content of Dopamine, a Strong Antioxidant, in Cavendish Banana. J. Agric. Food Chem. 48(3): 844–848.

 

Karel, M., and Lund, D.B. (2003). Physical Principles of Food Preservation: Revised and Expanded. CRC Press, Bota Raton.

 

Kaur, C., and Kapoor, H.C. (2001). Antioxidants in fruits and vegetables—Themillennium's health. Int. J. Food Sci. Technol. 36: 703–725.

 

Kocot, J., Luchowska-Kocot, D., Kiełczykowska, M., Musik, I., and Kurzepa, J. (2017). Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 9(7): 659.

 

Kris-Etherton, P.M., Hecker, K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., Griel, A.E., and Etherton, T.D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113: 71S–88S.

 

Kuhnert, S., Lehmann, L., and Winterhalter, P. (2015). Rapid characterisation of grape seed extracts by a novel HPLC method on a diol stationary phase. J. Funct. Foods 15: 225–232.

 

Kumar, R., Vijayalakshmi, S., Rajeshwara, R., Sunny, K., and Nadanasabapathi, S. (2019). Effect of storage on thermal, pulsed electric field and combination processed mango nectar. J. Food Meas. Charact. 13(1): 131–143.

 

Lammerskitten, A., Shorstkii, I., Parniakov, O., Mykhailyk, V., Toepfl, S., Rybak, K., Dadan, M., Nowacka, M., and Wiktor, A. (2020). The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. J. Food Process. Preserv. 44(12): e14973.

 

Lee, F.Y., Vo, G.T., Barrow, C.J., Dunshea, F.R., and Suleria, H.A. (2021). Mango rejects and mango waste: Characterization and quantification of phenolic compounds and their antioxidant potential. J. Food Process. Preserv. 45(7): e15618.

 

Leong, S.Y., and Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 133(4): 1577–1587.

 

Li, L., Pegg, R.B., Eitenmiller, R.R., Chun, J. -Y., and Kerrihard, A.L. (2017). Selected nutrient analyses of fresh, fresh-stored, and frozen fruits and vegetables. J. Food Compos. Anal. 59: 8–17.

 

Lima, A.L.S., Lima, K.S.C., Coelho, M.J., Silva, J.M., Godoy, R.L.O., and Pacheco, S. (2009). Avaliação dos efeitos da radiação gama nos teores de carotenóides, ácido ascórbico e açúcares do futo buriti do brejo (Mauritia flexuosa L.). Acta Amaz. 39(3): 649–654.

 

Lima, L.G.B., Montenegro, J., Abreu, J.P.D., Santos, M.C.B., Nascimento, T.P.D., Santos, M.D.S., Ferreira, A.G., Cameron, L.C., Ferreira, M.S.L., and Teodoro, A.J. (2020). Metabolite profiling by UPLC-MSE, NMR, and antioxidant properties of Amazonian fruits: Mamey Apple (Mammea americana), Camapu (Physalis angulata), and Uxi (Endopleura uchi). Molecules 25(2): 342.

 

Li, W., Yang, R., Ying, D., Yu, J., Sanguansri, L., and Augustin, M.A. (2020). Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crops. Prod. 147: 112250.

 

Liu, W., Zhao, S., Wang, J., Shi, J., Sun, Y., Wang, W., Ning, G., Hong, J., and Liu, R. (2017). Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 61(9): 1601082.

 

Loureiro, A.D.C., Souza, F.D.C.D.A., Sanches, E.A., Bezerra, J.D.A., Lamarão, C.V., Rodrigues, S., Fernandes, F.A.N., and Campelo, P.H. (2021). Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Food Res. Int. 147: 110462.

 

Luengo, E., Álvarez, I., and Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. IFSET 17: 79–84.

 

Marçal, S., and Pintado, M. (2021). Mango peels as food ingredient/additive: Nutritional value, processing, safety and applications. Trends Food Sci. Techol. 114: 472–489.

 

Matta, F.V., Xiong, J., Lila, M.A., Ward, N.I., Felipe-Sotelo, M., and Esposito, D. (2020). Chemical composition and bioactive properties of commercial and non-commercial purple and White Açaí berries. Foods 9(10): 1481.

 

Matos, K.A.N., Lima, D.P., Barbosa, A.P.P., Mercadante, A.Z., and Chisté, R.C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem. 272: 216–221.

 

Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G.A., Alvarez-Parrilla, E., and Sáyago-Ayerdi, S.G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L. 'Ataulfo') by-products on in vitro bioaccessibility. Food Biosci. 21: 125–131.

 

Mickle, A.T., Brenner, D.R., Beattie, T., Williamson, T., Courneya, K.S., and Friedenreich, C.M. (2019). The Dietary Inflammatory Index® and Alternative Healthy Eating Index 2010 in relation to leucocyte telomere length in postmenopausal women: A cross-sectional study. J. Nutr. Sci. 8: e35.

 

Mieszczakowska-Frąc, M., Celejewska, K., and Płocharski, W. (2021). Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants 10(1): 54.

 

Milanez, J.T., Neves, L.C., Colombo, R.C., Shahab, M., and Roberto, S.R. (2018). Bioactive compounds and antioxidant activity of buriti fruits, during the postharvest, harvested at different ripening stages. Sci. Hortic. 227: 10–21.

 

Ohlsson, T., and Bengtsson, N. (2002). Minimal processing technologies in the food industry. Woodhead Publishing, Sawston.

 

Otero, P., Viana, M., Herrera, E., and Bonet, B. (1997). Antioxidant and prooxidant effects of ascorbic acid, dehydroascorbic acid and flavonoids on LDL submitted to different degrees of oxidation. Free Radic. Res. 27(6): 619–626.

 

Pan, M.H., Lai, C.S., Dushenkov, S., and Ho, C.T. (2009). Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agr. Food Chem. 57(11): 4467–4477.

 

Parfitt, J., Barthel, M., and Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B 365(1554): 3065–3081.

 

Park, H.H., Lee, S., Son, H.Y., Park, S.B., Kim, M.S., Choi, E.J., Singh, T.S.K., Ha, J. -H., Lee, M-G., Kim, J. -E., Hyun, M.C., Kwon, T.K., Kim, Y.H., and Kim, S.H. (2008). Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 31(10): 1303–1311.

 

Pereira, R.N., Coelho, M.I., Genisheva, Z., Fernandes, J.M., Vicente, A.A., and Pintado, M.E. (2020). Using Ohmic Heating effect on grape skins as a pretreatment for anthocyanins extraction. Food Bioprod. Process. 124: 320–328.

 

Pisoschi, A.M., and Negulescu, G.P. (2012). Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 01(01): 106.

 

Quirós-Sauceda, A.E., Chen, C.Y.O., Blumberg, J.B., Astiazaran-Garcia, H., Wall-Medrano, A., and González-Aguilar, G.A. (2017). Processing 'ataulfo' mango into juice preserves the bioavailability and antioxidant capacity of its phenolic compounds. Nutrients 9(10): 1082.

 

Ramazzina, I., Tappi, S., Rocculi, P., Sacchetti, G., Berardinelli, A., Marseglia, A., and Rizzi, F. (2016). Effect of cold plasma treatment on the functional properties of fresh-cut apples. J. Agric. Food Chem. 64(42): 8010–8018.

 

Rana, S., Kumar, S., Rana, A., Padwad, Y., and Bhushan, S. (2021). Biological activity of phenolics enriched extracts from industrial apple pomace. Ind. Crops Prod. 160: 113158.

 

Rauf, A., Imran, M., Abu-Izneid, T., Patel, S., Pan, X., Naz, S., Silva, A.S., Saeed, F., and Suleria, H.A.R. (2019). Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 116: 108999.

 

Resende, L.M., Franca, A.S., and Oliveira, L.S. (2019). Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 270: 53–60.

 

Rodrigo, M.J., Cilla, A., Barberá, R., and Zacarías, L. (2015). Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food Funct. 6(6): 1950–1959.

 

Rudke, A.R., Andrade, K.S., Mazzutti, S., Zielinski, A.A.F., Alves, V.R., Vitali, L., and Ferreira, S.R.S. (2021). A comparative study of phenolic compounds profile and in vitro antioxidant activity from buriti (Mauritia flexuosa) by-products extracts. LWT 150: 111941.

 

Ruiz, P.A., Braune, A., Hölzlwimmer, G., Quintanilla-Fend, L., and Haller, D. (2007). Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr. 137(5): 1208–1215.

 

Sagrillo, M.R., Garcia, L.F.M., de Souza Filho, O.C., Duarte, M.M.M.F., Ribeiro, E.E., Cadoná, F.C., and Cruz, B.M. (2015). Tucumã fruit extracts (Astrocaryum aceleatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem. 173: 741–748.

 

Saini, A., Panesar, P.S., and Bera, M.B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 6(1): 1–12.

 

Salinas-Roca, B., Soliva-Fortuny, R., Welti-Chanes, J., and Martín-Belloso, O. (2018). Effect of pulsed light, edible coating, and dipping on the phenolic profile and antioxidant potential of fresh-cut mango. J. Food Process. Preserv. 42(5): e13591.

 

Sanchez-Camargo, A.P., Gutierrez, L.F., Vargas, S.M., Martinez-Correa, H.A., Parada-Alfonso, F., and Narvaez-Cuenca, C.E. (2019). Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 152: 104574.

 

Santos, P.D.F., Rubio, F.T.V., de Carvalho Balieiro, J.C., Thomazini, M., and Favaro-Trindade, C.S. (2021). Application of spray drying for production of microparticles containing the carotenoid-rich tucuma oil (Astrocaryum vulgare Mart.). LWT 143: 111106.

 

Schefer, S., Oest, M., and Rohn, S. (2021). Interactions between Phenolic Acids, Proteins, and Carbohydrates-Influence on Dough and Bread Properties. Foods 10(11): 2798.

 

Serna-Saldivar, S.O. (2010). Cereal Grains: Properties, Processing, and Nutritional Attributes. CRC Press, Boca Raton.

 

Shahidi, F., Danielski, R., and Ikeda, C. (2021). Phenolic compounds in cereal grains and effects of processing on their composition and bioactivities: A review. J. Food Bioact. 15: 39–50.

 

Shahidi, F., and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct. Foods 18: 820–897.

 

Shahidi, F., Varatharajan, V., Oh, W.Y., and Peng, H. (2019). Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 5(1): 57–119.

 

Shoji, T., Masumoto, S., Moriichi, N., Kanda, T., and Ohtake, Y. (2006). Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS. J. Chromatogr. A 1102(1-2): 206–213.

 

Siacor, F.D.C., Lim, K.J.A., Cabajar, A.A., Lobarbio, C.F.Y., Lacks, D.J., and Taboada, E.B. (2020). Physicochemical properties of spray-dried mango phenolic compounds extracts. J. Agric. Food Res. 2: 100048.

 

Siebert, D.A., de Mello, F., Alberton, M.D., Vitali, L., and Micke, G.A. (2020). Determination of acetylcholinesterase and α-glucosidase inhibition by electrophoretically-mediated microanalysis and phenolic profile by HPLC-ESI-MS/MS of fruit juices from Brazilian Myrtaceae Plinia cauliflora (Mart.) Kausel and Eugenia uniflora L. Nat. Prod. Res. 34(18): 2683–2688.

 

Silva-Espinoza, M.A., Ayed, C., Foster, T., Camacho, M.D.M., and Martínez-Navarrete, N. (2019). The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 9(1): 32.

 

Simsek, M., Quezada-Calvillo, R., Ferruzzi, M.G., Nichols, B.L., and Hamaker, B.R. (2015). Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. J. Agr. Food Chem. 63(15): 3873–3879.

 

Singh, B., Singh, J.P., Kaur, A., and Singh, N. (2016). Bioactive compounds in banana and their associated health benefits–A review. Food Chem. 206: 1–11.

 

Skrede, G., Wrolstad, R.E., and Durst, R.W. (2000). Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). J. Food Sci. 65(2): 357–364.

 

Soliva-Fortuny, R.C., and Martín-Belloso, O. (2003). New advances in extending the shelf-life of fresh-cut fruits: A review. Trends Food Sci. Technol. 14(9): 341–353.

 

Sogi, D.S., Siddiq, M., Greiby, I., and Dolan, K.D. (2013). Total phenolics, antioxidant activity, and functional properties of 'Tommy Atkins' mango peel and kernel as affected by drying methods. Food Chem. 141(3): 2649–2655.

 

Sricharoen, P., Limchoowong, N., Techawongstien, S., and Chanthai, S. (2016). A novel extraction method for β-carotene and other carotenoids in fruit juices using air-assisted, low-density solvent-based liquid–liquid microextraction and solidified floating organic droplets. Food Chem. 203: 386–393.

 

Sunil Kumar, B.V., Singh, S., and Verma, R. (2017). Anticancer potential of dietary vitamin D and ascorbic acid: A review. Crit. Rev. Food Sci. Nutr. 57(12): 2623–2635.

 
Tambara, A.L., de Los Santos Moraes, L., Dal Forno, A.H., Boldori, J.R., Goncalves Soares, A.T., de Freitas Rodrigues, C., Mariutti, L.R.B., Mercadante, A.Z., de Avila, D.S., and Denardin, C.C. (2018). Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 120: 639–650.
 

Tan, J., Li, Q., Xue, H., and Tang, J. (2020). Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. J. Food Sci. 85(11): 3731–3744.

 

Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D.A., and Garcia-Viguera, C. (2014). Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 15(9): 15638–15678.

 

Tiwari, B.K., O'Donnell, C.P., Muthukumarappan, K., and Cullen, P.J. (2009). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT 42(3): 700–704.

 

Tomas-Barberan, F.A., and Gil, M.I. (2008). Improving the health-promoting properties of fruit and vegetable products. CRC Press, Bota Raton.

 

Uddin, M.S., Hawlader, M.N.A., Ding, L., and Mujumdar, A.S. (2002). Degradation of ascorbic acid in dried guava during storage. J. Food Eng. 51(1): 21–26.

 

Unusan, N. (2020). Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J. Funct. Foods 67: 103861.

 
USDA. (2015). Composition of Foods Raw, Processed, Prepared National Nutrient Database for Standard Reference. 2015-2020 Dietary Guidelines for Americans, 144.
 

Vámos-Vigyázó, L., and Haard, N.F. (1981). Polyphenol oxidases and peroxidases in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 15(1): 49–127.

 

Van Breda, S.G.J., and de Kok, T.M.C.M. (2018). Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 62(1): 1700597.

 

Verde Méndez, C.M., Rodríguez Delgado, M.A., Rodríguez Rodríguez, E.M., and Díaz Romero, C. (2004). Content of free phenolic compounds in cultivars of potatoes harvested in Tenerife (Canary Islands). J. Agric. Food Chem. 52(5): 1323–1327.

 
Vinholes, J., Gelain, D.P., and Vizzotto, M. (2016). Stone Fruits as a Source of Bioactive Compounds. Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters: Part 1. pp. 110–142.
 

Vu, H.T., Scarlett, C.J., and Vuong, Q.V. (2018). Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 40: 238–248.

 
WHO. (2005). Fruit and vegetables for health: Report of the Joint FAO/WHO Workshop on Fruit and Vegetables for Health, 1-3 September 2004, Kobe, Japan. World Health Organization. https://apps.who.int/iris/handle/10665/43143. Accessed May 30 2022.
 

Wibowo, S., Essel, E.A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., Van Loey, A., and Hendrickx, M. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. IFSET 54: 64–77.

 

Zacarías-García, J., Rey, F., Gil, J.V., Rodrigo, M.J., and Zacarías, L. (2021). Antioxidant capacity in fruit of Citrus cultivars with marked differences in pulp coloration: Contribution of carotenoids and vitamin C. Food Sci. Technol. Int. 27(3): 210–222.

 

Zaini, H.M., Roslan, J., Saallah, S., Munsu, E., Sulaiman, N.S., and Pindi, W. (2022). Banana peels as a bioactive ingredient and its potential application in the food industry. J. Funct. Foods 92: 105054.

 

Zaini, H.B.M., Sintang, M.D.B., and Pindi, W. (2020). The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. Food Sci. Nutr. 8(10): 5497–5507.

Journal of Food Bioactives
Pages 52-66
Cite this article:
Shahidi F, Danielski R, da Silva GRB. Effect of processing on the preservation of bioactive compounds in traditional and exotic fruits: a review. Journal of Food Bioactives, 2022, 18: 52-66. https://doi.org/10.31665/JFB.2022.18308
Metrics & Citations  
Article History
Copyright
Return