AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Protective effect of Melanogrammus aeglefinus skin oligopeptide in ultraviolet B-irradiated human keratinocytes

Ziyan Wanga,bLisha DongbJiaojiao Hana,bJun Zhoua,bChenyang Lua,bYe Lia,bTinghong Minga,bZhen Zhanga,bRixin Wangb( )Xiurong Sua,b( )
State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo 315211, China
School of Marine Science, Ningbo University, Ningbo 315832, China
Show Author Information

Abstract

Ultraviolet B (UVB)-induced cell death causes skin photoaging. In this study, we investigated the protective effect of Melanogrammus aeglefinus skin oligopeptide (MSOP) in UVB-irradiated human keratinocytes. The method of preparing MSOP was optimized, and three peptides with high abundance, VADML (Val-Ala-Asp-Met-Leu), IARF (Ile-Ala-Arg-Phe) and SSPSF (Ser-Ser-Pro-Ser-Phe), were identified. Discovery Studio predicted that these peptides interacted with Keap1 and contributed to antioxidant activity. Therefore, a UVB-induced cell model was used to explore the beneficial effects of MSOP in vitro. The activities of superoxide dismutase and glutathione peroxidase were increased in the MSOP-treated groups, while the malondialdehyde content was decreased. In addition, 23 differentially expressed proteins were identified through quantitative proteomics analysis; among them, the upregulation of Nrf2 and downregulation of Keap1, which are involved in the Keap1/Nrf2/ARE signaling pathway, contributed to the antioxidant process. Based on this study, MSOP might be an alternative agent for protecting the skin against UVB exposure.

References

 

Berry, K., Hallock, K. and Lam, C. (2022). Photoaging and topical rejuvenation. Facial. Plast. Surg. Clin. North Am. 30(3): 291-300.

 

Brigelius-Flohé, R. and Flohé, L. (2020). Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid. Redox. Signal. 33(7): 498-516.

 

Bruno Siewe, F., Kudre, T.G. and Narayan, B. (2021). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chem. 334: 127498.

 

Chen, K., Yang, Q., Hong, H., Feng, L., Liu, J. and Luo, Y. (2020). Physicochemical and functional properties of Maillard reaction products derived from cod (Gadus morhua L.) skin collagen peptides and xylose. Food Chem. 333: 127489.

 

Chen, T. and Hou, H. (2016). Protective effect of gelatin polypeptides from Pacific cod (Gadus macrocephalus) against UV irradiation-induced damages by inhibiting inflammation and improving transforming growth factor-β/Smad signaling pathway. J. Photochem. Photobiol. B 162: 633-640.

 

Chen, T., Hou, H., Fan, Y., Wang, S., Chen, Q., Si, L. and Li, B. (2016). Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J. Photochem. Photobiol. B 165: 34-41.

 

Dai, X., Zhang, Q., Zhang, G., Ma, C. and Zhang, R. (2023). Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr. Polym. 313: 120878.

 

Del Rio, D., Stewart, A.J. and Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15(4): 316-328.

 

Dhar, H., Verma, S., Dogra, S., Katoch, S., Vij, R., Singh, G. and Sharma, M. (2023). Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit. Rev. Food Sci. Nutr. 1-23.

 

Fan, S., Huang, Y., Lu, G., Sun, N., Wang, R., Lu, C., Ding, L., Han, J., Zhou, J., Li, Y., Ming, T. and Su, X. (2022). Novel anti-hyperuricemic hexapeptides derived from Apostichopus japonicus hydrolysate and their modulation effects on the gut microbiota and host microRNA profile. Food Funct. 13(7): 3865-3878.

 

Fernandes, A., Rodrigues, P.M., Pintado, M. and Tavaria, F.K. (2023). A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine 115: 154824.

 

Freitas-Rodríguez, S., Folgueras, A.R. and López-Otín, C. (2017). The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta. Mol. Cell Res. 1864(11 Pt A): 2015-2025.

 

Guo, J., Wang, P., Cheng, Q., Sun, L., Wang, H., Wang, Y., Kao, L., Li, Y., Qiu, T., Yang, W. and Shen, H. (2017). Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J. Proteomics. 168: 15-27.

 

Guo, Y., Zhang, Y., Wang, Y.S., Ma, L., Liu, H., and Gao, W. (2023). Protective effect of Salvia plebeia R. Br ethanol extract on UVB-induced skin photoaging in vitro and in vivo. Photodermatol. Photoimmunol. Photomed.

 

Han, J., Huang, Z., Tang, S., Lu, C., Wan, H., Zhou, J., Li, Y., Ming, T., Jim Wang, Z. and Su, X. (2020). The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation. Food Chem. 327: 127094.

 

Hassanein, E.H.M., Sayed, A.M., Hussein, O.E. and Mahmoud, A.M. (2020). Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxid. Med. Cell Longev. 2020: 1675957.

 

Hooda, R., Madke, B. and Choudhary, A. (2023). Photoaging: reversal of the oxidative atress through dietary changes and plant-based products. Cureus 15(4): e37321.

 

Huang, Y., Fan, S., Lu, G., Sun, N., Wang, R., Lu, C., Han, J., Zhou, J., Li, Y., Ming, T. and Su, X. (2021). Systematic investigation of the amino acid profiles that are correlated with xanthine oxidase inhibitory activity: Effects, mechanism and applications in protein source screening. Free Radic. Biol. Med. 177: 326-336.

 

Khayatan, D., Razavi, S.M., Arab, Z.N., Hosseini, Y., Niknejad, A., Momtaz, S., Abdolghaffari, A.H., Sathyapalan, T., Jamialahmadi, T., Kesharwani, P. and Sahebkar, A. (2023). Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol. Cell Biochem.

 

Kong, J., Hu, X.M., Cai, W.W., Wang, Y.M., Chi, C.F. and Wang, B. (2023). Bioactive peptides from Skipjack Tuna cardiac arterial bulbs (Ⅱ): protective function on UVB-irradiated HaCaT cells through antioxidant and anti-apoptotic mechanisms. Mar. Drugs 21(2):.

 

Kumar, K.J.S., Vani, M.G. and Wang, S.Y. (2022). Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. Environ. Toxicol. 37(12): 2897-2909.

 

Löwenau, L.J., Zoschke, C., Brodwolf, R., Volz, P., Hausmann, C., Wattanapitayakul, S., Boreham, A., Alexiev, U. and Schäfer-Korting, M. (2017). Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes. Eur. J. Pharm. Biopharm. 116: 149-154.

 

Lim, H.S., Simon, S.E., Yow, Y.Y., Saidur, R. and Tan, K.O. (2022). Photoprotective activities of Lignosus rhinocerus in UV-irradiated human keratinocytes. J. Ethnopharmacol. 299: 115621.

 

Liu, C., Guo, X., Chen, Y., Zhao, M., Shi, S., Luo, Z., Song, J., Zhang, Z., Yang, W. and Liu, K. (2023). Anti-photoaging effect and mechanism of flexible liposomes co-loaded with apigenin and doxycycline. Biomed. Pharmacother. 164: 114998.

 

Liu, H.M., Tang, W., Wang, X.Y., Jiang, J.J., Zhang, W. and Wang, W. (2023). Safe and effective antioxidant: the biological mechanism and potential pathways of ergothioneine in the skin. Molecules 28(4):.

 

Liu, J., Pang, C., Wei, H., Song, M., Meng, Y., Ma, J., Fan, S. and Yu, S. (2015). iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J. Proteomics. 126: 68-81.

 

Lu, C., Tang, S., Han, J., Fan, S., Huang, Y., Zhang, Z., Zhou, J., Ming, T., Li, Y. and Su, X. (2021). Apostichopus japonicus oligopeptide induced heterogeneity in the gastrointestinal tract microbiota and alleviated hyperuricemia in a microbiota-dependent manner. Mol. Nutr. Food Res. 65(14): e2100147.

 

Masaki, H., Izutsu, Y., Yahagi, S. and Okano, Y. (2009). Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J. Investig. Dermatol. Symp. Proc. 14(1): 50-52.

 

Miles, H.N., Tomlin, D., Ricke, W.A. and Li, L. (2023). Integrating intracellular and extracellular proteomic profiling for in-depth investigations of cellular communication in a model of prostate cancer. Proteomics.

 

Ngo, D.H., Ryu, B., Vo, T.S., Himaya, S.W., Wijesekara, I. and Kim, S.K. (2011). Free radical scavenging and angiotensin-Ⅰ converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 49(5): 1110-1116.

 

Oh, J.H., Lee, J.I., Karadeniz, F., Park, S.Y., Seo, Y. and Kong, C.S. (2020). Antiphotoaging effects of 3,5-Dicaffeoyl-epi-quinic acid via inhibition of matrix metalloproteinases in UVB-irradiated human keratinocytes. Evid. Based Complement Alternat. Med. 2020: 8949272.

 

Ong, A.J.S., Bladen, C.E., Tigani, T.A., Karamalakis, A.P., Evason, K.J., Brown, K.K. and Cox, A.G. (2023). The KEAP1-NRF2 pathway regulates TFEB/TFE3-dependent lysosomal biogenesis. Proc. Natl. Acad. Sci. U S A 120(22): e2217425120.

 

Rutherfurd, S.M. (2010). Methodology for determining degree of hydrolysis of proteins in Hydrolysates: a review. J. AOAC Int. 93(5): 1515-1522.

 

Shi, X., Cheng, W., Wang, Q., Zhang, J., Wang, C., Li, M., Zhao, D., Wang, D. and An, Q. (2021). Exploring the protective and reparative mechanisms of G. lucidum polysaccharides against H2O2-induced oxidative stress in human skin fibroblasts. Clin. Cosmet. Investig. Dermatol. 14: 1481-1496.

 

Song, X., Li, Z., Li, Y. and Hou, H. (2022). Typical structure, biocompatibility, and cell proliferation bioactivity of collagen from Tilapia and Pacific cod. Colloids Surf. B Biointerfaces 210: 112238.

 

Suzuki, T., Takahashi, J. and Yamamoto, M. (2023). Molecular basis of the KEAP1-NRF2 signaling pathway. Mol. Cells 46(3): 133-141.

 

Ucak, I., Afreen, M., Montesano, D., Carrillo, C., Tomasevic, I., Simal-Gandara, J. and Barba, F.J. (2021). Functional and bioactive properties of peptides derived from marine side streams. Mar. Drugs 19(2): 71.

 

Uitto, J. (1997). Understanding premature skin aging. N. Engl. J. Med. 337(20): 1463-1465.

 

Wu, L., Hu, X., Xu, L. and Zhang, G. (2020). Cod skin oligopeptide inhibits human gastric carcinoma cell growth by inducing apoptosis. Nutr. Cancer 72(2): 218-225.

 

Wu, W., Li, B., Hou, H., Zhang, H. and Zhao, X. (2017). Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium. Food Funct. 8(12): 4441-4448.

 

Xiao, T., Chen, Y., Song, C., Xu, S., Lin, S., Li, M., Chen, X. and Gu, H. (2021). Possible treatment for UVB-induced skin injury: Anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J. Dermatol. Sci. 102(1): 25-35.

 

Yang, B., Li, Y., Guo, W., Zhang, Q., Pan, L., Duan, K., Zhang, P., Ren, L., Zhang, W., Wang, Q. and Kong, D. (2023). Optimized approach for active peptides identification in Cerebrolysin by nanoLC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1225: 123755.

 

Yuan, L., Duan, X., Zhang, R., Zhang, Y. and Qu, M. (2020). Aloe polysaccharide protects skin cells from UVB irradiation through Keap1/Nrf2/ARE signal pathway. J. Dermatolog. Treat. 31(3): 300-308.

Journal of Food Bioactives
Pages 43-52
Cite this article:
Wang Z, Dong L, Han J, et al. Protective effect of Melanogrammus aeglefinus skin oligopeptide in ultraviolet B-irradiated human keratinocytes. Journal of Food Bioactives, 2023, 22: 43-52. https://doi.org/10.31665/JFB.2023.18347

57

Views

0

Downloads

0

Crossref

Altmetrics

Received: 02 June 2023
Revised: 17 June 2023
Accepted: 17 June 2023
Published: 30 June 2023
© 2023 International Society for Nutraceuticals and Functional Foods. All rights reserved.
Return