Mustard bran is enriched with bioactive phenolic compounds and glucosinolates, yet it is underutilized as a low-value processing by-product. Here, we investigate the effects of solid-state fermentation (SSF) using various food-grade microorganisms (Aspergillus spp., Rhizopus spp., Bacillus subtilis, Saccharomyces cerevisiae) on the phytochemical composition and antioxidant activities of oriental mustard and yellow mustard brans. The total phenolic contents (TPC) and antioxidant activities (FRAP, DPPH assays) of oriental and yellow mustard brans were significantly improved (p < 0.05) after fermentation, especially by R. oligosporus and R. oryzae. Moreover, SSF by R. oligosporus and R. oryzae significantly increased (p < 0.05) the levels of p-hydroxybenzoic acid, syringic acid, protocatechuic acid, sinapic acid and kaempferol-3-O-glucoside in both mustard brans. Conversely, a significant reduction (p < 0.05) of major glucosinolates in oriental and yellow mustard brans were observed after SSF by R. oligosporus. Findings from this study show that SSF by filamentous fungi is a promising strategy to enhance the phenolic contents, antioxidant properties and overall value of oriental and yellow mustard brans.
Alrifai, O., Mats, L., Liu, R., Hao, X., Marcone, M.F. and Tsao, R. (2021). Effect of combined light-emitting diodes on the accumulation of glucosinolates in Brassica microgreens. Food Prod., Proc. Nutr. 3(1): 30.
Anhê, F.F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T.V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E. and Marette, A. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. Population in the gut microbiota of mice. Gut 64(6): 872-883.
Amorati, R. and Valgimigli, L. (2015). Advantages and limitations of common testing methods for antioxidants. Free Rad. Res. 49(5): 633-649.
Bhanja Dey, T., Chakraborty, S., Jain, K.K., Sharma, A. and Kuhad, R.C. (2016). Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. and Tech. 53: 60-74.
Bhanja Dey, T. and Kuhad, R.C. (2014). Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Let. App. Micro. 59(5): 493-499.
Bouranis, J.A., Beaver, L.M. and Ho, E. (2021). Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front. Nutr. 8: 748433.
Călinoiu, L.F., Cătoi, A.-F. and Vodnar, D.C. (2019). Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants 8(9): 372.
Cantabrana, I., Perise, R. and Hernández, I. (2015). Uses of Rhizopus oryzae in the kitchen. Int. J. Gast. Food Sci. 2(2): 103-111.
Chen, G., Liu, Y., Zeng, J., Tian, X., Bei, Q. and Wu, Z. (2020). Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis. J. Cer. Sci. 93(Feb): 102940.
Chen, P.X., Bozzo, G.G., Freixas-Coutin, J.A., Marcone, M.F., Pauls, P.K., Tang, Y., Zhang, B., Liu, R. and Tsao, R. (2015). Free and conjugated phenolic compounds and their antioxidant activities in regular and non-darkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Func. Foods. 18: 1047-1056.
Hashemzaei, M., Far, A.D., Yari, A., Heravi, R.E., Tabrizian, K., Taghdisi, S.M., Sadegh, S.E., Tsarouhas, K., Kouretas, D., Tzanakakis, G., Nikitovic, D., Anisimov, N.Y., Spandidos, D.A., Tsatsakis, A.M. and Rezaee, R. (2017). Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Onc. Rep. 38(2): 819-828.
Ishida, M., Hara, M., Fukino, N., Kakizaki, T. and Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Sci. 64(1): 48-59.
Kleemann, R., Verschuren, L., Morrison, M., Zadelaar, S., Van Erk, M.J., Wielinga, P.Y. and Kooistra, T. (2011). Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218(1): 44-52.
Li, D., Zhang, Y., Liu, Y., Sun, R. and Xia, M. (2015). Purified Anthocyanin Supplementation Reduces Dyslipidemia, Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients. J. Nutr. 145(4): 742-748.
Li, H., Deng, Z., Wu, T., Liu, R., Loewen, S. and Tsao, R. (2012). Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 130(4): 928-936.
Mayengbam, S., Aachary, A. and Thiyam-Holländer, U. (2014). Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Antioxidants 3(3): 544-558.
Moore, J., Cheng, Z., Hao, J., Guo, G., Liu, J.G., Lin, C. and Yu, L. (2007). Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. J. Agr. Food Chem. 55(25): 10173-10182.
Nguyen, V.P.T., Stewart, J.D., Ioannou, I. and Allais, F. (2021). Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Front. Chem. 9: 664602.
Pan, Z., Meng, Z., Tan, M., Duan, H., Ramaswamy, H.S., Qiu, X. and Wang, C. (2022). Optimization the conversion of glucosinolate to isothiocyanate in yellow mustard seeds (Sinapis alba) by response surface methodology. App. Food Res. 2(2): 100207.
Roasa, J., De Villa, R., Mine, Y. and Tsao, R. (2021). Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci. & Tech. 116: 954-974.
Saxena, R. and Singh, R. (2011). Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Braz. J. of Micro. 42(4): 1334-1342.
Sandhu, K.S., Punia, S. and Kaur, M. (2016). Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT 71: 323-328.
Sethi, B.K., Nanda, P.K. and Sahoo, S. (2016). Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Braz. J. of Micro. 47(1): 143-149.
Shahidi, F. and Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules 21(9): 1216.
Sharma, R., Garg, P., Kumar, P., Bhatia, S.K. and Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(4): 1-20.
Shin, H.-Y., Kim, S.-M., Lee, J.H. and Lim, S.-T. (2019). Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 272: 235-241.
Sikorska-Zimny, K. and Beneduce, L. (2021). The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit. Rev. Food Sci. Nutr. 61(15): 2544-2571.
Spaggiari, M., Ricci, A., Calani, L., Bresciani, L., Neviani, E., Dall’Asta, C., Lazzi, C. and Galaverna, G. (2020). Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT 118: 108668.
Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C. and Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 136(2): 1030-1037.
Torrijos, R., Righetti, L., Cirlini, M., Calani, L., Mañes, J., Meca, G. and Dall’Asta, C. (2023). Phytochemical profiling of volatile and bioactive compounds in yellow mustard (Sinapis alba) and oriental mustard (Brassica juncea) seed flour and bran. LWT 173: 114221.
Zhang, B., Zhang, Y., Li, H., Deng, Z. and Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci. & Tech. 105: 347-362.
Zhang, L., Gao, W., Chen, X. and Wang, H. (2014). The effect of bioprocessing on the phenolic acid composition and antioxidant activity of wheat bran. Cereal Chem. 91(3): 255-261.
Zhang, Y., Wei, R., Azi, F., Jiao, L., Wang, H., He, T., Liu, X., Wang, R. and Lu, B. (2022). Solid-state fermentation with Rhizopus oligosporus RT-3 enhanced the nutritional properties of soybeans. Front. Nutr. 9: 972860.