Dietary polyphenols including anthocyanins possess strong antioxidant and anti-inflammatory properties, and are known to help reduce risks of oxidative stress-induced chronic diseases. However, their effects on various aspects of the gut microenvironment towards preventing the unhealthy diet-induced metabolic disorders are still not well understood. The present study aims to verify the in vitro antioxidant and anti-inflammatory effects of the anthocyanin-rich extracts of purple potato (PPE), using a lipopolysaccharide (LPS) and high-fat diet (HFD)-induced obesity C57/BL6J mouse model, and to examine the effects of PPE on LPS+HFD-impaired metabolic homeostasis and the underlying mechanisms. We found that PPE, especially at higher dose significantly improved the glucose and lipid metabolism, and reduced inflammation in the plasma and various tissues. It significantly improved intestinal barrier integrity, altered fecal metabolite profile and gut microbiota composition. Our findings provide new insights into the roles of highly-pigmented vegetable-derived anthocyanins in maintaining gut health and ameliorating metabolic syndrome.
Alcock, J., Maley, C.C., and Aktipis, C.A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 36(10): 940–949.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., AlGhalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodriguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S. 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., and Caporaso, J.G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QⅡME 2. Nat. Biotechnol. 37(8): 852–857.
Cani, P.D. (2018). Human gut microbiome: hopes, threats and promises. Gut 67(9): 1716–1725.
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F.J., and Queipo-Ortuño, M.I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24(8): 1415–1422.
Castillo-Armengol, J., Fajas, L., and Lopez-Mejia, I.C. (2019). Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep. 20(9): e47903.
Chu, H., and Mazmanian, S.K. (2013). Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14(7): 668.
Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., and Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Front. Immunol. 9: 2649.
Fedarko, M.W., Martino, C., Morton, J.T., Gonzalez, A., Rahman, G., Marotz, C.A., Minich, J.J., Allen, E.E., and Knight, R. (2020). Visualizing’omic feature rankings and log-ratios using Qurro. NAR Genom. Bioinform. 2(2): lqaa023.
Fossen, T., Cabrita, L., and Andersen, O.M. (1998). Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 63(4): 435–440.
Garrett, W.S., Gordon, J.I., and Glimcher, L.H. (2010). Homeostasis and inflammation in the intestine. Cell 140(6): 859–870.
Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A., and Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17(2): 259–275.
Gomes, J.M.G., de Assis Costa, J., and Alfenas, R.D.C.G. (2017). Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 68: 133–144.
Halfvarson, J., Brislawn, C.J., Lamendella, R., Vázquez-Baeza, Y., Walters, W.A., Bramer, L.M., D'Amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A., McClure, E.E., Dunklebarger, M.F., Knight, R., and Jansson, J.K. (2017). Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2(5): 17004.
Heyman-Linden, L., Kotowska, D., Sand, E., Bjursell, M., Plaza, M., Turner, C., Holm, C., Fak, F., and Berger, K. (2016). Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr. Res. 60: 29993.
Honda, A., Yoshida, T., Xu, G., Matsuzaki, Y., Fukushima, S., Tanaka, N., Doy, M., Shefer, S., and Salen, G. (2004). Significance of plasma 7α-hydroxy-4-cholesten-3-one and 27-hydroxycholesterol concentrations as markers for hepatic bile acid synthesis in cholesterol-fed rabbits. Metabolism 53(1): 42–48.
Hurst, R.D., Lyall, K.A., Wells, R.W., Sawyer, G.M., Lomiwes, D., Ngametua, N., and Hurst, S.M. (2020). Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front. Nutr. 7: 16.
Joseph, S.V., Edirisinghe, I., and Burton-Freeman, B.M. (2014). Berries: anti-inflammatory effects in humans. J. Agric. Food Chem. 62(18): 3886–3903.
Khoo, H.E., Azlan, A., Tang, S.T., and Lim, S.M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61(1): 1361779.
Kotas, M.E., and Medzhitov, R. (2015). Homeostasis, inflammation, and disease susceptibility. Cell 160(5): 816–827.
Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., Pang, H., Jiang, L., Qiu, B., Chen, X., Zhang, Y., Ma, Y., Tang, S., Li, H., Feng, S., Zhang, S., and Zhang, C. (2019). Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7(1): 68.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25(4): 402–408.
Martin, G., Kolida, S., Marchesi, J.R., Want, E., Sidaway, J.E., and Swann, J.R. (2018). In vitro modeling of bile acid processing by the human fecal microbiota. Front. Microbiol. 9: 1153.
Mehta, N.N., McGillicuddy, F.C., Anderson, P.D., Hinkle, C.C., Shah, R., Pruscino, L., Tabita-Martinez, J., Sellers, K.F., Rickels, M.R., and Reilly, M.P. (2010). Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59(1): 172–181.
Millet, S., Van Oeckel, M.J., Aluwe, M., Delezie, E., and De Brabander, D.L. (2010). Prediction of in vivo short-chain fatty acid production in hindgut fermenting mammals: problems and pitfalls. Crit. Rev. Food Sci. Nutr. 50(7): 605–619.
Moreira, A.P.B., Texeira, T.F.S., Ferreira, A.B., Peluzio, M.d.C.G., and Alfenas, R.d.C.G. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108(5): 801–809.
Morton, J.T., Marotz, C., Washburne, A., Silverman, J., Zaramela, L.S., Edlund, A., Zengler, K., and Knight, R. (2019). Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10(1): 2719.
Mosele, J.I., Gosalbes, M.J., Macia, A., Rubio, L., Vazquez-Castellanos, J.F., Jimenez Hernandez, N., Moya, A., Latorre, A., and Motilva, M.J. (2015). Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers. Mol. Nutr. Food Res. 59(10): 1942–1953.
Nair, A.B., and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm. 7(2): 27–31.
Nemes, A., Homoki, J.R., Kiss, R., Hegedus, C., Kovacs, D., Peitl, B., Gal, F., Stundl, L., Szilvassy, Z., and Remenyik, J. (2019). Effect of Anthocyanin-Rich Tart Cherry Extract on Inflammatory Mediators and Adipokines Involved in Type 2 Diabetes in a High Fat Diet Induced Obesity Mouse Model. Nutrients 11(9): 1966.
Parada Venegas, D., De la Fuente, M.K., Landskron, G., Gonzalez, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N., and Hermoso, M.A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 10: 277.
Pendyala, S., Walker, J.M., and Holt, P.R. (2012). A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142(5): 1100–1101.e1102.
Peterson, L.W., and Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14(3): 141–153.
Power, K.A., Lepp, D., Zarepoor, L., Monk, J.M., Wu, W., Tsao, R., and Liu, R. (2016). Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. J. Nutr. Biochem. 28: 61–69.
Rios-Covian, D., González, S., Nogacka, A.M., Arboleya, S., Salazar, N., Gueimonde, M., and de los Reyes-Gavilán, C.G. (2020). An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front. Microbiol. 11: 973.
Suganami, T., Nishida, J., and Ogawa, Y. (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb. Vasc. Biol. 25(10): 2062–2068.
Tang, W.W., Li, D.Y., and Hazen, S.L. (2019). Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 16(3): 137–154.
Tsuda, T. (2012). Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 56(1): 159–170.
Vendrame, S., and Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr. Rev. 73(6): 348–358.
Villena, J., and Kitazawa, H. (2014). Modulation of intestinal TLR4-inflammatory signaling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front. Immunol. 4: 512.
Wahlström, A., Sayin, S.I., Marschall, H.-U., and Bäckhed, F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24(1): 41–50.
Ward, J.B.J., Lajczak, N.K., Kelly, O.B., O'Dwyer, A.M., Giddam, A.K., Ni Gabhann, J., Franco, P., Tambuwala, M.M., Jefferies, C.A., Keely, S., Roda, A., and Keely, S.J. (2017). Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 312(6): G550-G558.
Zeng, Y., Zhang, H., Zong, L., Tsao, R., Arie, H., Izumo, T., Shibata, H., and Mine, Y. (2019). Lactobacillus pentosus S-PT84 prevents LPS-induced low-grade chronic inflammation in a C57BL/6J mouse model. J. Funct. Foods 62: 103526.
Zhang, H., Hassan, Y.I., Renaud, J., Liu, R., Yang, C., Sun, Y., and Tsao, R. (2017). Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Mol. Nutr. Food Res. 61(10): 1600928.
Zhang, H., Hassan, Y.I., Renaud, J., Liu, R., Yang, C., Sun, Y., and Tsao, R. (2017). Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono-and co-culture cell models. Mol. Nutr. Food Res. 61(10): 1600928.
Zhang, H., Kovacs-Nolan, J., Kodera, T., Eto, Y., and Mine, Y. (2015). gamma-Glutamyl cysteine and gamma-glutamyl valine inhibit TNF-alpha signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim. Biophys. Acta 1852(5): 792–804.
Zhang, H., Liu, R., and Tsao, R. (2016). Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J. Funct. Foods 22: 363–375.
Zhang, H., Qi, R., Zeng, Y., Tsao, R., and Mine, Y. (2020). Chinese Sweet Leaf Tea (Rubus suavissimus) Mitigates LPS-Induced Low-Grade Chronic Inflammation and Reduces the Risk of Metabolic Disorders in a C57BL/6J Mouse Model. J. Agric. Food Chem. 68(1): 138–146.
Zhao, L., Yang, W., Chen, Y., Huang, F., Lu, L., Lin, C., Huang, T., Ning, Z., Zhai, L., Zhong, L.L., Lam, W., Yang, Z., Zhang, X., Cheng, C., Han, L., Qiu, Q., Shang, X., Huang, R., Xiao, H., Ren, Z., Chen, D., Sun, S., El-Nezami, H., Cai, Z., Lu, A., Fang, X., Jia, W., and Bian, Z. (2019). A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J. Clin. Invest. 130(1): 438–450.