Carotenoids are lipophilic natural pigments distributed in plants, certain types of algae, fungi and animals. The extensive conjugated double bond system in carotenoids is responsible for their unique color, antioxidant capacity and provide health benefits. However, the hydrophobic nature of carotenoids impacts their color and bioactivity during the development of food products due to their low solubility in aqueous media. The complexation of these molecules with proteins has proven to be an efficient approach for enhancing carotenoid’s solubility and protection against oxidative degradation and hence improving their functional properties and biological activities. This review compiles the molecular interactions between carotenoids and proteins, their physiological relevance, potential applications and characterization of their binding affinities, stabilities, and activities in terms of in-silico analysis and beyond. Overall, the deep understanding and interpretation of binding at the molecular level provide fundamental aspects for the inclusion of carotenoid bioactive compounds in fortified foods and pharmaceuticals.
Aas, G.H., Bjerkeng, B., Storebakken, T., and Ruyter, B. (2000). Blood appearance, metabolic transformation and plasma transport proteins of 14 C-astaxanthin in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 21: 325–334.
Allahdad, Z., Varidi, M., Zadmard, R., and Saboury, A.A. (2018). Spectroscopic and docking studies on the interaction between caseins and β-carotene. Food Chem. 255: 187–196.
Allahdad, Z., Varidi, M., Zadmard, R., Saboury, A.A., and Haertlé, T. (2019). Binding of β-carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Food Chem. 277: 96–106.
Anarjan, N., Nehdi, I.A., Sbihi, H.M., Al-Resayes, S.I., Malmiri, H.J., and Tan, C.P. (2014). Preparation of astaxanthin nanodispersions using gelatin-based stabilizer systems. Molecules 19(9): 14257–14265.
Anarjan, N., Tan, C.P., Nehdi, I.A., and Ling, T.C. (2012). Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chem. 135(3): 1303–1309.
Ando, S., and Hatano, M. (1988). Bilirubin-binding protein in the serum of spawning-migrating chum salmon, Oncorhynchus keta: Its identity with carotenoid-carrying lipoprotein. Fish Physiol. Biochem. 5(2): 69–78.
Aprodu, I., Ursache, F.M., Turturică, M., Râpeanu, G., and Stănciuc, N. (2017). Thermal stability of the complex formed between carotenoids from sea buckthorn (Hippophae rhamnoides L.) and bovine β-lactoglobulin. Spectrochim Acta A Mol. Biomol. Spectrosc. 173: 562–571.
Armenta-López, R., Guerrero, L.I., and Huerta, S. (2002). Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J. Food Sci. 67(3): 1002–1006.
Auldridge, M.E., McCarty, D.R., and Klee, H.J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9(3): 315–321.
Bandyopadhyay, P., Ghosh, A.K., and Ghosh, C. (2012). Recent developments on polyphenol-protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 3(6): 592–605.
Berger, H., Ronneberg, H., and Borcht, G. (1982). Animal carotenoids. Further studies on the carotenoprotein alloporin ex. Allopora Californica. Comp. Biochem. Physiol. 71(2): 253–258.
Bernharda, K., Englert, G., Meister, W., and Vecchi, M. (1982). Carotenoids of the Carotenoprotein Asteriarubin. Optical Purity of Asterinic Acid. Helv. Chim. Acta 65(7): 2224–2229.
Bhosale, P., and Bernstein, P.S. (2007). Vertebrate and invertebrate carotenoid-binding proteins. Arch. Biochem. Biophys. 458(2): 121–127.
Britton, G. (2008). Functions of Intact Carotenoids. Carotenoids 4: 189–212.
Britton, G. (2020). Carotenoids. Mol. Cell Biol. Lipids 1865(11): 158699.
Britton, G., and Helliwell, J.R. (2008). Carotenoid-Protein Interactions. Carotenoids 4: 99–118.
Buitimea-Cantúa, N.E., Gutiérrez-Uribe, J.A., and Serna-Saldívar, S.O. (2018). Phenolic-protein interactions: Effects on food properties and health benefits. J. Med. Food 21(2): 188–198.
Chang, H.T., Cheng, H., Han, R.M., Zhang, J.P., and Skibsted, L.H. (2016). Binding to Bovine Serum Albumin Protects β-Carotene against Oxidative Degradation. J. Agric. Food Chem. 64(29): 5951–5957.
Cheesman, D.F. (1958). Ovorubin, a chromoprotein from the eggs of the gastropod mollusc Pomacea canaliculata. Proc. R. Soc. Lond. B Biol. Sci. 149(937): 571–587.
Cornacchia, L., and Roos, H. (2011). Stability of β -Carotene in Protein-Stabilized Oil-in-Water Delivery Systems. J. Agric. Food Chem. 59: 7013–7020.
Cremades, O., Parrado, J., Jover, M., Gutierrez, J.F., Bautista, J., and Tera, L.C.D.E. (2003). Isolation and characterization of carotenoproteins from crayfish (Procambarus clarkii). Food Chem. 82: 559–566.
Cunningham, K.E., Novak, E.A., Vincent, G., Siow, V.S., Griffith, B.D., Ranganathan, S., Rosengart, M.R., Piganelli, J.D., and Mollen, K.P. (2019). Calcium/calmodulin-dependent protein kinase Ⅳ (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation. Fed. Am. Soc. Exp. Biol. 33(1): 1330–1346.
Czeczuga, B. (1983a). Caroteno-protein complexes in four species of echinodermata from the adriatic. Biochem. Syst. Ecol. 11(2): 123–125.
Czeczuga, B. (1983b). Investigations of carotenoprotein complexes in animals-Ⅵ. Anemonia sulcata, The representative of askeletal corals. Comp. Biochem. Physiol. 75(1): 181–183.
Czeczuga, B. (1983c). Investigations of carotenoprotein complexes in animals-Ⅷ. Unio pictorum (L.) as a representative of fresh-water molluscs. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 75(3): 541–543.
Dellisanti, C.D., Spinelli, S., Cambillau, C., Findlay, J.B.C., Zagalsky, P.F., Finet, S., and Brechot, V.R. (2003). Quaternary structure of alpha-crustacyanin from lobster as seen by small-angle X-ray scattering. Fed. Eur. Biochem. Soc. 544: 189–193.
Deming, D.M., and Erdman, J.W. (1999). Mammalian carotenoid absorption and metabolism. Pure Appl. Chem. 71(12): 2213–2223.
Demmig-Adams, B., Stewart, J.J., López-Pozo, M., Polutchko, S.K., and Adams, W.W. (2020). Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules (Basel, Switzerland) 25(24): 5825.
Deng, X.X., Zhang, N., and Tang, C.H. (2016). Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of β-Carotene. J. Sci. Food Agric. 97(7): 2230–2237.
Dumitraşcu, L., Ursache, F.M., Stănciuc, N., and Aprodu, I. (2016). Studies on binding mechanism between carotenoids from sea buckthorn and thermally treated α-lactalbumin. J. Mol. Struct. 1125: 721–729.
During, A., and Harrison, E.H. (2004). Intestinal absorption and metabolism of carotenoids: Insights from cell culture. Arch. Biochem. Biophys. 430(1): 77–88.
Erdman, J.W., Bierer, T.L., and Gugger, E.T. (1993). Absorption and Transport of Carotenoids. Ann. N. Y. Acad. Sci. 691(1): 76–85.
Eroglu, A., Hruszkewycz, D.P., Dela Sena, C., Narayanasamy, S., Riedl, K.M., Kopec, R.E., Schwartz, S.J., Curley, R.W., and Harrison, E.H. (2012). Naturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. J. Biol. Chem. 287(19): 15886–15895.
Fan, J., Fu, A., and Zhang, L. (2019). Progress in molecular docking. Quant. Biol. 7(2): 83–89.
Fan, Y., Yi, J., Zhang, Y., Wen, Z., and Zhao, L. (2017). Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocolloids 63(2017): 256–264.
Fu, D., Deng, S., McClements, D.J., Zhou, L., Zou, L., Yi, J., Liu, C., and Liu, W. (2019). Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids 89: 80–89.
Gangurde, H.H., Chordiya, M.A., Patil, P.S., and Baste, N.S. (2011). Whey protein. Review Article. Sch. Res. J. 1(2): 69–78.
Gärtner, C., Stahl, W., and Sies, H. (1997). Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am. J. Clin. Nutr. 66(1): 116–122.
Gheonea, I. (Dima), Aprodu, I., Râpeanu, G., and Stănciuc, N. (2018). Binding mechanisms between lycopene extracted from tomato peels and bovine β-lactoglobulin. J. Lumin. 203(April): 582–589.
Gilchrist, B.M., and Green, J. (1962). Bile pigment in Chirocephalus diaphanus prevost (crustacea: anostraca). Comp. Biochem. Physiol. 7(1–2): 117–125.
Gomez, R., Manzano, I., Garate, A.M., Barbon, P.G., Macarulla, J.M., and Milicua, J.G. (1988). A purple carotenoprotein from the carapace of Galathea strigosa. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 90(1): 53–57.
Hashemi, S.A., Bathaie, S.Z., and Mohagheghi, M.A. (2020a). Interaction of saffron carotenoids with catalase: in vitro, in vivo and molecular docking studies. J. Biomol. Struct. Dyn. 38(13): 3916–3926.
Hashemi, S.A., Karami, M., and Bathaie, S.Z. (2020b). Saffron carotenoids change the superoxide dismutase activity in breast cancer: In vitro, in vivo and in silico studies. Int. J. Biol. Macromol. 158: 845–853.
Hata, T.R., Scholz, T.A., Ermakov, I.V., McClane, R.W., Khachik, F., Gellermann, W., and Pershing, L.K. (2000). Non-invasive Raman spectroscopic detection of carotenoids in human skin. J. Invest. Dermatol. 115(3): 441–448.
Hazai, E., Bikádi, Z., Zsila, F., and Lockwood, S.F. (2006). Molecular modeling of the non-covalent binding of the dietary tomato carotenoids lycopene and lycophyll, and selected oxidative metabolites with 5-lipoxygenase. Bioorg. Med. Chem. 14(20): 6859–6867.
Hempel, J., Schädle, C.N., Leptihn, S., Carle, R., and Schweiggert, R.M. (2016). Structure related aggregation behavior of carotenoids and carotenoid esters. J. Photochem. Photobiol., A 317: 161–174.
Heras, H., Dreon, M.S., Ituarte, S., and Pollero, R.J. (2007). Egg carotenoproteins in neotropical Ampullariidae (Gastropoda: Arquitaenioglossa). Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 146(1-2): 158–167.
Hou, X., Rivers, J., León, P., McQuinn, R.P., and Pogson, B.J. (2016). Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 21(9): 792–803.
Jafarisani, M., Bathaie, S.Z., and Mousavi, M.F. (2018). Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. J. Biomol. Struct. Dyn. 36(7): 1681–1690.
Jarunglumlert, T., Nakagawa, K., and Adachi, S. (2015). Influence of aggregate structure of casein on the encapsulation efficiency of β-carotene entrapped via hydrophobic interaction. Food Struct. 5: 42–50.
Johnson, E.J. (2002). The role of carotenoids in human health. Nutr. Clin. Care 5(2): 56–65.
Khoo, H., Prasad, K.N., Kong, K., Jiang, Y., and Ismail, A. (2011). Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 16: 1710–1738.
Kimpel, F., and Schmitt, J.J. (2015). Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals. J. Food Sci. 80(11): R2361–R2366.
Kontopidis, G., Holt, C., and Sawyer, L. (2004). Invited review: β-lactoglobulin: Binding properties, structure, and function. J. Dairy Sci. 87(4): 785–796.
Lakey-Beitia, J., Doens, D., Jagadeesh Kumar, D., Murillo, E., Fernandez, P.L., Rao, K.S., and Durant-Archibold, A.A. (2017). Anti-amyloid aggregation activity of novel carotenoids: Implications for alzheimer’s drug discovery. Clin. Interventions Aging 12: 815–822.
Lakey-Beitia, J., Jagadeesh Kumar, D., Hegde, M.L., and Rao, K.S. (2019). Carotenoids as novel therapeutic molecules against neurodegenerative disorders: Chemistry and molecular docking analysis. Int. J. Mol. Sci. 20(22): 1–22.
Lee, L., and Gilchrist, B.M. (1972). Pigmentation, color change and the ecology of the marine isopod Idotea resecata (Stimpson). J. Exp. Mar. Biol. Ecol. 10: 1–27.
Li, X., Wang, G., Chen, D., and Lu, Y. (2015). b -Carotene and astaxanthin with human and bovine serum albumins. Food Chem. 179: 213–221.
Lin, K.H., Lin, K.C., Lu, W.J., Thomas, P.A., Jayakumar, T., and Sheu, J.R. (2016). Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and Il-2 secretion in primary cultured lymphocytes in vitro and ex vivo. Int. J. Mol. Sci. 17(1): 1–10.
Liu, Y., Huang, L., Li, D., Wang, Y., Chen, Z., Zou, C., Liu, W., Ma, Y., Cao, M.J., and Liu, G.M. (2020). Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking. Food Hydrocolloids 103: 105689.
Livney, Y.D. (2010). Current Opinion in Colloid & Interface Science Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15(1–2): 73–83.
López-Rubio, A., and Lagaron, J.M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci. Emerging Technol. 13: 200–206.
Mantovani, R.A., Hamon, P., Rousseau, F., Tavares, G.M., Mercadante, A.Z., Croguennec, T., and Bouhallab, S. (2020). Unraveling the molecular mechanisms underlying interactions between caseins and lutein. Food Res. Int. 138: 109781.
Mantovani, R.A., Rasera, M.L., Vidotto, D.C., Mercadante, A.Z., and Tavares, G.M. (2021). Binding of carotenoids to milk proteins: Why and how. Trends Food Sci. Technol. 110: 280–290.
Mao, L., Wang, D., Liu, F., and Gao, Y. (2018). Emulsion design for the delivery of β-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 58(5): 770–784.
Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs 9(2): 278–293.
Matthews, S.J., Ross, N.W., Lall, S.P., and Gill, T.A. (2006). Astaxanthin binding protein in Atlantic salmon. Comp. Biochem. Physiol. 144: 206–214.
McSweeney, P.L.H., and Fox, P.F. (2013). Proteins: Basic aspects. Adv. Dairy Chem. 1: 1–548.
Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M. (2012). Molecular Docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des. 7(2): 146–157.
Mensi, A., Choiset, Y., Rabesona, H., Haertlé, T., Borel, P., and Chobert, J.M. (2013). Interactions of β-lactoglobulin variants A and B with vitamin A. Competitive binding of retinoids and carotenoids. J. Agric. Food Chem. 61(17): 4114–4119.
Metibemu, D.S., Akinloye, O.A., Akamo, A.J., and Okoye, J.O. (2021). In-silico HMG-CoA reductase inhibitory and in-vivo anti-lipidaemic/anticancer effects of carotenoids from Spondias mombin. J. Pharm. Pharmacol. 73: 1377–1386.
Milicua, J.C.G., Arberas, I., Barbon, P.G., Garate, A.M., and Gomez, R. (1986). Yellow carotenoprotein from the carapace of the crayfish Astacus leptodactylus. Comp. Biochem. Physiol. 85B(3): 615–619.
Milicua, J.C.G., Gomez, R., Garate, A.M., and Macarulla, J.M. (2000). Red carotenoprotein from the carapace of the crayfish, Procambus clarkii. Comp. Biochem. Physiol. 81B(4): 1023–1025.
Møller, A.H., Wijaya, W., Jahangiri, A., Madsen, B., Joernsgaard, B., Vaerbak, S., Hammershøj, M., Van der Meeren, P., and Dalsgaard, T.K. (2020). Norbixin binding to whey protein isolate - alginate electrostatic complexes increases its solubility and stability. Food Hydrocolloids 101: 105559.
Mora-Gutierrez, A., Attaie, R., Núñez de González, M.T., Jung, Y., Woldesenbet, S., and Marquez, S.A. (2018). Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan. J. Dairy Sci. 101(1): 18–27.
Mozaffarieh, M., Sacu, S., and Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2: 1–8.
Naz, H., Khan, P., Tarique, M., Rahman, S., Meena, A., Ahamad, S., Luqman, S., Islam, A., Ahmad, F., and Hassan, M.I. (2017). Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase Ⅳ. Int. J. Biol. Macromol. 96: 161–170.
Paiva, P.H.C., Coelho, Y.L., da Silva, L.H.M., Pinto, M.S., Vidigal, M.C.T.R., and Pires, A.C. dos S. (2020). Influence of protein conformation and selected Hofmeister salts on bovine serum albumin/lutein complex formation. Food Chem. 305: 125463.
Pan, X., Yao, P., and Jiang, M. (2007). Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein- graft -dextran and β -carotene. J. Colloid Interface Sci. 315: 456–463.
Park, S.J., Jaiswal, V., and Lee, H.J. (2022). Dietary intake of flavonoids and carotenoids is associated with anti-depressive symptoms: Epidemiological study and in silico—mechanism analysis. Antioxidants 11(1): 53.
Peng, J., Yuan, J.P., Wu, C.F., and Wang, J.H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs 9(10): 1806–1828.
Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces: A review. Food Hydrocolloids 24(4): 259–265.
Rao, A.V., and Rao, L.G. (2007). Carotenoids and human health. Pharmacol. Res. 55(3): 207–216.
Rehman, A., Tong, Q., Jafari, S.M., Assadpour, E., Shehzad, Q., Aadil, R.M., Iqbal, M.W., Rashed, M.M.A., Mushtaq, B.S., and Ashraf, W. (2020). Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci. 275: 102048.
Renstrom, B., Ronnerberg, H., Borch, G., and Liaaen-jensen, S. (1982). Animal carotenoids--27*. further studies on the carotenoproteins crustacyanin and ovoverdin. Compartive Biochemistry and Physiology 71B: 249–252.
Rezende, J. de P., Coelho, Y.L., de Paula, H.M.C., da Silva, L.H.M., and Pires, A.C. dos S. (2020). Temperature modulation of lutein-lysozyme hydrophobic-hydrophilic interaction balance. J. Mol. Liq. 316: 113887.
Roche, M., Rondeau, P., Singh, N.R., Tarnus, E., and Bourdon, E. (2008). The antioxidant properties of serum albumin. Fed. Eur. Biochem. Soc. 582(13): 1783–1787.
Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., GomezGomez, L., Hornero-Mendez, D., Limon, M.C., Meléndez-Martínez, A.J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M.J., Zacarias, L., and Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 70(April): 62–93.
Saini, R.K., Nile, S.H., and Park, S.W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 76: 735–750.
Sáiz-Abajo, M.J., González-Ferrero, C., Moreno-Ruiz, A., Romo-Hualde, A., and González-Navarro, C.J. (2013). Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chem. 138(2–3): 1581–1587.
Santoro, P., Guerriero, V., and Parisi, G. (1990). An orange carotenoprotein from the marine sponge Axinella verrucosa (O. Schmidt). Purification and properties. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 97(4): 645–648.
Shahidi, F., and Brown, J.A. (1998). Carotenoid pigments in seafoods and aquaculture. Crit. Rev. Food Sci. Nutr. 38(1): 1–67.
Shahidi, F., Synowiecki, J., and Penney, R.W. (1993). Pigmentation of artic char (Salvelinus alpinus) by dietary carotenoids. J. Aquat. Food Prod. Technol. 2(1): 99–115.
Shete, V., and Quadro, L. (2013). Mammalian metabolism of β-carotene: Gaps in knowledge. Nutrients 5(12): 4849–4868.
Sommer, A. (2008). Vitamin A deficiency and clinical disease: An historical overview. J. Nutr. 138(10): 1835–1839.
Taghipour, F., Motamed, N., Amoozegar, M.A., Shahhoseini, M., and Mahdian, S. (2022). Carotenoids as potential inhibitors of TNFα in COVID-19 treatment. PLoS ONE 17(12): e0276538.
Velu, C.S., Czeczuga, B., and Munuswamy, N. (2003). Carotenoprotein complexes in entomostracan crustaceans (Streptocephalus dichotomus and Moina micrura). Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 135(1): 35–42.
Venkataramana, V., Tripathy, S.C., and Anilkumar, N.P. (2017). The occurrence of blue-pigmented Pontella valida Dana, 1852 (Copepoda: Calanoida: Pontellidae) in the equatorial Indian Ocean. J. Crustacean Biol. 37(4): 512–515.
Vidal-Limon, A., Aguilar-Toalá, J.E., and Liceaga, A.M. (2022). Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 70(4): 934–943.
Villarroel, A., Garate, A.M., Gomez, R., Milicua, C.G., Bioquimica, D.D.E., Ciencias, F.D.E., and Vasco, P. (1985). A blue carotenoprotein from Upogebia pusilla. Purification, characterization and properties. Comp. Biochem. Physiol. 81B(2): 547–550.
Wackerbarth, H., Stoll, T., Gebken, S., Pelters, C., and Bindrich, U. (2009). Carotenoid-protein interaction as an approach for the formulation of functional food emulsions. Food Res. Int. 42(9): 1254–1258.
Wang, C., Tian, Z., Chen, L., Temelli, F., Liu, H., and Wang, Y. (2010). Functionality of barley proteins extracted and fractionated by alkaline and alcohol methods. Cereal Chem. 87(6): 597–606.
Wang, R., Tian, Z., and Chen, L. (2011). Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds. Int. J. Pharm. 406(1–2): 153–162.
Wibowo, S., Widyarti, S., Sabarudin, A., Soeatmadji, D.W., and Sumitro, S.B. (2019). The The Role Of Astaxanthin Compared With Metformin In Preventing Glycated Human Serum Albumin From Possible Unfolding: A Molecular Dynamic Study. Asian J. Pharm. Clin. Res. 12(9): 276–282.
Yang, J., Zhou, Y., and Chen, L. (2014). Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food Funct. 5(1): 92–101.
Yi, J., Fan, Y., Yokoyama, W., Zhang, Y., and Zhao, L. (2016). Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability. Food Chem. 200: 91–97.
Yim, S.K., Kim, I., Warren, B., Kim, J., Jung, K., and Ku, B. (2021). Antiviral activity of two marine carotenoids against sars-cov-2 virus entry in silico and in vitro. Int. J. Mol. Sci. 22(12): 6481.
Yonekura, L., and Nagao, A. (2007). Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 51(1): 107–115.
Zagalsky, P.F. (1985). A study of the astaxanthin-lipovitellin, ovoverdin, isolated from the ovaries of the lobster, Homarus gammarus (L.). Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 80(3): 589–597.
Zagalsky, P.F. (1989). Studies on a blue carotenoprotein, linckiacyanin, isolated from the starfish Linckia laevigata (echinodermata?: asteroidea)*. Comp. Biochem. Physiol. 93B(2): 339–353.
Zagalsky, P.F., Ceccaldi, H.J., and Daumas, R. (1970). Comparative studies on some decapod crustacean carotenoproteins. Comp. Biochem. Physiol. 34(3): 579–607.
Zagalsky, P.F., Wright, C.E., and Parsons, M. (1995). α-crustacyanin, the lobster carapace astaxanth in-protein?: results from Eureca. Adv. Space Res. 16(8): 91–94.
Zhang, Y., and Zhong, Q. (2012a). Effects of thermal denaturation on binding between bixin and whey protein. J. Agric. Food Chem. 60: 7526–7531.
Zhang, Y., and Zhong, Q. (2012b). Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. J. Agric. Food Chem. 60(7): 1880–1886.
Zhao, C., Shen, X., and Guo, M. (2018). Stability of lutein encapsulated whey protein nano-emulsion during storage. PLoS ONE 13(2): 1–10.
Zhu, J., Sun, X., Wang, S., Xu, Y., and Wang, D. (2017). Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocolloids 63: 391–403.