Bioactive peptides are well-known for their remarkable tissue affinity, specificity, and effectiveness in promoting health. Extracted from food proteins, these bioactive peptides have displayed significant potential as functional foods and nutraceuticals. Throughout the years, numerous potential bioactive peptides derived from food sources have been documented. These bioactive peptides offer a wide range of crucial functions within the human body, including acting as antioxidants, antimicrobial agents, anti-inflammatory compounds, anti-hypertensive substances, and immunomodulators. More recently, extensive research has been conducted to investigate the origins, bioavailability, potential physiological effects and functionality, as well as the mechanisms of action of bioactive peptides in rendering health benefits. Researchers have also delved into various technological methods for preparing, purifying, and characterizing these peptides. This contribution primarily centers on exploring the antioxidant and antimicrobial aspects of bioactive peptides.
Abeer, M.M., Trajkovic, S., and Brayden, D.J. (2021). Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed. Pharmacother. 144: 112275.
Abril, A.G., Pazos, M., Villa, T.G., Calo-Mata, P., Barros-Velázquez, J., and Carrera, M. (2022). Proteomics characterization of food-derived bioactive peptides with anti-allergic and anti-inflammatory properties. Nutrients 14(20): 4400.
Agrawal, H., Joshi, R., and Gupta, M. (2016). Isolation, purification and characterization of antioxidative peptide of Pearl Millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204: 365–372.
Ajibola, C.F., Fashakin, J.B., Fagbemi, T.N., and Aluko, R.E. (2011). Effect of peptide size on antioxidant properties of African Yam Bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 12(10): 6685–6702.
Akbarian, M., Ali, K., Sara, E., and Vladimir, N.U. (2022). Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 23(3): 1445.
Akbarian, M., Khani, A., Eghbalpour, S., and Uversky, V.N. (2022). Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 23(3): 1445.
Alavi, F., and Ciftci, O.N. (2023). Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci. Technol. 131: 118–128.
Aluko, R.E. (2015). Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol. 6: 235–262.
Aluko, R.E., and Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolysates. J. Food Sci. 68(4): 1254–1258.
Amarowicz, R., and Shahidi, F. (1997). Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem. 58(4): 355–359.
Amarowicz, R., Karamać, M., and Shahidi, F. (1999). Synergistic activity of capelin protein hydrolysates with synthetic antioxidants in a model system. J. Food Lipids 6(4): 271–275.
Aslam, H., Ruusunen, A., Berk, M., Loughman, A., Rivera, L., Pasco, J.A., and Jacka, F.N. (2020). Unravelled facets of milk derived opioid peptides: A focus on gut physiology, fractures and obesity. Int. J. Food Sci. Nutri. 71(1): 36–49.
Awuchi, C.G., Chukwu, C.N., Iyiola, A.O., Noreen, S., Morya, S., Adeleye, A.O., Twinomuhwezi, H., Leicht, K., Mitaki, N.B., and Okpala, C.O.R. (2022). Bioactive compounds and therapeutics from fish: Revisiting their suitability in functional foods to enhance human wellbeing. BioMed Res. Int. 2022: 3661866.
Balgir, P.P. (2016). Antihypertensive peptides derived from food sources. MOJ Food Proc. Tech. 2(1): 1–6.
Boukil, A., Suwal, S., Chamberland, J., Pouliot, Y., and Doyen, A. (2018). Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. J. Membr. Sci. 556: 42–53.
Brogden, K.A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Micro. 3: 238–250.
Caron, J., Domenger, D., Dhulster, P., Ravallec, R., and Cudennec, B. (2017). Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front. Endocrinol. 24: 8–85.
César, A.P.C., Lopes, F.E.S., Azevedo, F.F.N., Pinto, Y.O., Andrade, C.R., Mesquita, F.P., Silva, G.O., Freitas, C.D.T., and Souza, P.F.N. (2024). Antioxidant peptides from plants: A review. Phytochem. Rev. 23(1): 95–104.
Chakrabarti, S., Guha, S., and Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10(11): 1–17.
Chalamaiah, M., Ulug, S.K., Hong, H., and Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 58: 123–129.
Chen, C.H., and Lu, T.K. (2020). Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9(1): 24.
Chen, C.H., Starr, C.G., Troendle, E., Wiedman, G., Wimley, W.C., Ulmschneider, J.P., and Ulmschneider, M.B. (2019). Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. J. Am. Chem. Soc. 141(12): 4839–4848.
Cheng, J.T.J., Hale, J.D., Elliot, M., Hancock, R.E.W., and Straus, S.K. (2009). Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys. J. 96(2): 552–65.
Chi, C.F., Cao, G.H., Hu, F.Y., Li, Z.R., and Zhang, B. (2014). Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight. Molecules 19(8): 11211–11230.
Chou, C.H., Wang, S.Y., Lin, Y.T., and Chen, Y.C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. Int. J. Food Sci. Tech. 49(7): 1654–1662.
Cruz-Casas, D.E., Aguilar, C.N., Ascacio-Valdés, J.A., Rodríguez-Herrera, R., Chávez-González, M.L., and Flores-Gallegos, A.C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. 3: 100047.
Cumby, N., Zhong, Y., Naczk, M., and Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 109(1): 144–148.
Czelej, M., Garbacz, K., Czernecki, T., Wawrzykowski, J., and Waśko, A. (2022). Protein hydrolysates derived from animals and plants—A review of production methods and antioxidant activity. Foods 11(13): 1–28.
Daliri, E.B.M., Oh, D.H., and Lee, B.H. (2017). Bioactive peptides. Foods 6(5): 1–21.
Dijksteel, G.S., Ulrich, M.M., Middelkoop, E., and Boekema, B.K.H.L. (2021). Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microb. 12: 616979.
Du, XJ, Liu, XL, Zheng, XQ and Wang, XJ (2016). Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem 204: 427–436.
Epand, R.M., Walker, C., Epand, R.F., and Magarvey, N.A. (2016). Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta, Biomembr. 1858(5): 980–987.
Erak, M., Bellmann-sickert, K., Els-heindl, S., and Beck-sickinger, A.G. (2018). Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorg. Med. Chem. 26: 2759–2765.
Erdmann, K, Belinda, WYCheung and Henning, S (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 10: 643–654.
Esfandi, R., Walters, M.E., and Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 5(4): e01538.
Espeche, J.C., Varas, R., Maturana, P., Cutro, A.C., Maffía, P.C., and Hollmann, A. (2024). Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept. Sci. 116(1): e24305.
Etayash, H., Pletzer, D., Kumar, P., Straus, S.K., and Hancock, R.E.W. (2020). Cyclic derivative of host-defense peptide IDR-1018 improves proteolytic stability, suppresses inflammation, and enhances in vivo activity. J. Med. Chem. 63(17): 9228–9236.
Ewert, J., Eisele, T., and Stressler, T. (2022). Enzymatic production and analysis of antioxidative protein hydrolysates. Eur. Food Res. Technol. 248(8): 2167–2184.
Fatoki, T.H., Aluko, R.E., and Udenigwe, C.C. (2022). In silico investigation of molecular targets, pharmacokinetics, and biological activities of chicken egg ovalbumin protein hydrolysates. J. Food Bioact. 17: 34–48.
Fernández-Tomé, S., and Hernández-Ledesma, B. (2019). Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Res. Int. 116: 71–78.
Flynn, A., Korhonen, H., Marchelli, R., and Palou, A. (2008). Evolus® and reduce arterial stiffness - Scientific substantiation of a health claim related to Lactobacillus helveticus fermented Evolus® low-fat milk products and reduction of arterial stiffness pursuant to Article 14 of the Regulation (EC) No 1924/2006. EFSA J. 6(10): 824.
Froehlich, J.C. (1997). Opioid peptides. Alcohol Health Res. World 21(2): 132–136.
Fujita, H., and Yoshikawa, M. (1999). LKPNM: A prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44(1-2): 123–127.
Gao, R., Shu, W., Shen, Y., Sun, Q., Bai, F., Wang, J., Li, D., Li, Y., Jin, W., and Yuan, L. (2020). Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. J. Funct. Foods. 72: 104044.
Geissler, S., Zwarg, M., Knütter, I., Markwardt, F., and Brandsch, M. (2010). The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. FEBS J. 277(3): 790–795.
Guénard, F., Jacques, H., Gagnon, C., Marette, A., and Vohl, M.C. (2019). Acute effects of single doses of bonito fish peptides and vitamin D on whole blood gene expression levels: A randomized controlled trial. Int. J. Mol. Sci. 20(8): 1944.
Harnedy, P.A., and FitzGerald, R.J. (2012). Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods 4(1): 6–24.
Heo, H., Lee, H., Park, J., Kim, K.H., Jeong, H.S., and Lee, J. (2022). Antioxidant and cytoprotective capacities of various wheat (Triticum aestivum L.) cultivars in Korea. Foods 11(15): 2338.
Hernandez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004). Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52(6): 1504–1510.
Holeček, M. (2020). Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients 12(3): 848.
Hossain, A., Dave, D., and Shahidi, F. (2022). Antioxidant potential of sea cucumbers and their beneficial effects on human health. Mar. Drugs 20(8): 1–22.
Huan, Y., Kong, Q., Mou, H., and Yi, H. (2020). Antimicrobial peptides: Classification, design, application, and research progress in multiple fields. Front in Micro 11: 582779.
Huang, H.W. (2000). Action of antimicrobial peptides: Two-state model. Biochemistry 39(29): 8347–8352.
Huang, W.Y., Davidge, S.T., and Wu, J. (2013). Bioactive natural constituents from food sources-Potential use in hypertension prevention and treatment. Crit. Rev. Food Sci. Nutr. 53(6): 615–630.
Iijima, D., Sugama, H., Takahashi, Y., Hirai, M., Togashi, Y., Xie, J., Shen, J., Ke, Y., Akatsuka, H., and Kawaguchi, T. (2022). Discovery of SPH3127: A novel, highly potent, and orally active direct renin inhibitor. J. Medic. Chem. 65(16): 10882–1097.
Jakubczyk, A., Karas, M., Rybczynska-Tkaczyk, K., Zielinska, E., and Zielinski, D. (2020). Current trends of bioactive peptides - New sources and therapeutic effect. Foods 9(7): 846.
Jia, L., Wang, L., Liu, C., Liang, Y., and Lin, Q. (2021). Bioactive peptides from foods: Production, function, and application. Food Funct. 12(16): 7108–7125.
Jiehui, Z., Liuliu, M., Haihong, X., Yang, G., Yingkai, J., Lun, Z., Li, D.X.A., Dongsheng, Z., and and Shaohui, Z. (2014). Immunomodulating effects of casein-derived peptides QEPVL and QEPV on lymphocytes in vitro and in vivo. Food and Funct. 5(9): 2061–2069.
Jimeno, J., Faircloth, G., Fernandez Sousa-Faro, J.M., Scheuer, P., and Rinehart, K. (2004). New marine derived anticancer therapeutics ─ A journey from the sea to clinical trials. Mar. Drugs 2(1): 14–29.
Jin, D.X., Liu, X.L., Zheng, X.Q., Wang, X.J., and He, J.F. (2016). Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem. 204: 427–436.
Kabelka, I., and Vácha, R. (2021). Advances in molecular understanding of α-helical membrane-active peptides. Acc. Chem. Res. 54(9): 2196–2204.
Kellett, M.E., Greenspan, P., and Pegg, R.B. (2018). Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 244: 359–363.
Kieliszek, M., Pobiega, K., Piwowarek, K., and Kot, A.M. (2021). Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 26(7): 1858.
Kim, G.N., Jang, H.D., and Kim, C.I. (2007). Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using alcalase. Food Chem. 104(4): 1359–1365.
Kim, I.S., Hwang, C.W., Yang, W.S., and Kim, C.H. (2021). Current perspectives on the physiological activities of fermented soybean-derived Cheonggukjang. Int. J. Mol. Sci. 22(11): 5746.
Kitts, D.D., and Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9(16): 1309–1323.
Kleekayai, T., Le Gouic, A.V., Deracinois, B., Cudennec, B., and FitzGerald, R.J. (2020). In vitro characterisation of the antioxidative properties of whey protein hydrolysates generated under pH- and non pH-controlled conditions. Foods 9(5): 582.
Knežević-Jugović, Z., Culetu, A., Mijalković, J., Duta, D., Stefanović, A., Šekuljica, N., Đorđević, V., and Antov, M. (2022). Impact of different enzymatic processes on antioxidant, nutritional and functional properties of soy protein hydrolysates incorporated into novel cookies. Foods 12(1): 24.
Korhonen, H., and Pihlanto, A. (2003). Food-derived bioactive peptides - Opportunities for designing future foods. Curr. Pharm. Des. 9(16): 1297–1308.
Kostyra, E., Sienkiewicz-Szapka, E., Jarmoowska, B., Krawczuk, S., and Kostyra, H. (2004). Opioid peptides derived from milk proteins. Evolutionary aspect of the biological activity of peptides derived from food proteins.. Pol. J. Food Nutr. Sci. 13(1): 25–35.
Kumari, S., and Booth, V. (2022). Antimicrobial peptide mechanisms studied by whole-cell deuterium NMR. Int. J. Mol. Sci. 23(5): 2740.
Laver, D.R. (1994). The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys. J. 66(2): 355–359.
Leung, R., Venus, C., Zeng, T., and Tsopmo, A. (2018). Structure-function relationships of hydroxyl radical scavenging and chromium-Ⅵ reducing cysteine-tripeptides derived from rye secalin. Food Chem. 254: 165–169.
Li, J., Hu, S., Jian, W., Xie, C., and Yang, X. (2021). Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 62(1): 5.
Liu, H., and Bo, L. (2022). Separation and identification of collagen peptides derived from enzymatic hydrolysate of Salmo salar skin and their anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW264.7 inflammatory model. J. Food Biochem. 46: 14122.
Liu, Z., and Udenigwe, C.C. (2019). Role of food-derived opioid peptides in the central nervous and gastrointestinal systems. J. Food Biochem. 43(1): e12629.
Lizárraga-Velázquez, C.E., Leyva-López, N., Hernández, C., Gutiérrez-Grijalva, E.P., Salazar-Leyva, J.A., Osuna-Ruíz, I., and Martínez-Montaño, E. (2020). Antioxidant molecules from plant waste. Processes 8(1566): 1–44.
López-garcía, G., Dublan-garcía, O., Arizmendi-cotero, D., and Gómez Oliván, L.M. (2022). Antioxidant and antimicrobial peptides derived from food proteins. Molecules 27(4): 1–32.
Lorenzo, J.M., Munekata, P.E.S., Gómez, B., Barba, F.J., Mora, L., Pérez-Santaescolástica, C., and Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends Food Sci. Technol. 79: 136–147.
Lu, J., Xu, H., Xia, J., Ma, J., Xu, J., Li, Y., and Feng, J. (2020). D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front. Microbiol. 11: 563030.
Luna-Vital, D.A., Mojica, L., González de Mejía, E., Mendoza, S., and Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Res. Int. 76: 39–50.
Luo, X., Fei, Y., Xu, Q., Lei, T., Mo, X., Wang, Z., Zhang, L., Mou, X., and Li, H. (2020). Isolation and identification of antioxidant peptides from Tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities. J. Food Sci. 85(3): 611–617.
Madhu, M., Kumar, D., Sirohi, R., Tarafdar, A., Dhewa, T., Aluko, R.E., Badgujar, P.C., and Awasthi, M.K. (2022). Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. Chemosphere 307: 135650.
Maghraby, Y.R., El-Shabasy, R.M., Ibrahim, A.H., and Azzazy, H.M.E.S. (2023). Enzyme immobilization technologies and industrial applications. ACS Omega 8(6): 5184–5196.
Mann, B., Kumari, A., Kumar, R., Sharma, R., Prajapati, K., Mahboob, S., and Athira, S. (2015). Antioxidant activity of whey protein hydrolysates in milk beverage system. J. Food Sci. Technol. 52(6): 3235–3241.
Marcet, I., Carpintero, M., Rendueles, M., and Díaz, M. (2023). Antioxidant activity of egg yolk protein hydrolysates obtained by enzymatic and sub-critical water hydrolysis. Molecules 28(23): 7836.
Matsumura, N., Fujii, M., Takeda, Y., and Shimizu, T. (1993). Isolation and characterization of angiotensin Ⅰ-converting enzyme inhibitory peptides derived from bonito bowels. Biosci., Biotechnol., Biochem. 57(10): 1743–1744.
Matsuzaki, K. (1998). Magainins as paradigm for the mode of action of pore-forming polypeptides. Biochim. Biophys. Acta, Rev. Biomembr. 1376(3): 391–400.
Matsuzaki, K. (2019). Membrane permeabilization mechanisms. Adv. Exp. Med. Biol. 1117: 9–16.
Melini, F., Melini, V., Luziatelli, F., Ficca, A.G., and Ruzzi, M. (2019). Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients 11(5): 1–24.
Michalak, I., Dmytryk, A., Śmieszek, A., and Marycz, K. (2017). Chemical characterization of Enteromorpha prolifera extract obtained by enzyme-assisted extraction and its influence on the metabolic activity of Caco-2. Int. J. Mol. Sci. 18(3): 1–20.
Mirzapour-Kouhdasht, A., and Garcia-Vaquero, M. (2022). Cardioprotective peptides from milk processing and dairy products: From bioactivity to final products including commercialization and legislation. Foods 11(9): 1270.
Mishra, A.K., Choi, J., Moon, E., and Baek, K.H. (2018). Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 23(4): 1–23.
Montesano, D., Gallo, M., Blasi, F., and Cossignani, L. (2020). Biopeptides from vegetable proteins: New scientific evidences. Curr. Opin. Food Sci. 31: 31–37.
Mora, L., and Toldrá, F. (2023). Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 49: 100973.
Mukker, J.K., Michel, D., Muir, A.D., Krol, E.S., and Alcorn, J. (2014). Permeability and conjugative metabolism of flaxseed lignans by Caco-2 human intestinal cells. J. Nat. Prod. 77(1): 29–34.
Nagai, T., Suzuki, N., and Nagashima, T. (2006). Antioxidative activities and angiotensin Ⅰ-converting enzyme inhibitory activities of enzymatic hydrolysates from commercial kamaboko type samples. Food Sci. Technol. Int. 12(4): 335–346.
Najafian, L., Babji, A.S., Rodríguez-Herrera, R., and Cruz-Casas, D.E. (2021). Production of bioactive peptides using enzymatic hydrolysis and identification of antioxidative peptides from Patin (Pangasius sutchi) sarcoplasmic protein hydrolysate. Food Chem. 9: 280–289.
Ngo, D.H., Wijesekara, I., Vo, T.S., Ta, Q.V., and Kim, S.K. (2011). Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 44(2): 523–529.
Nikoo, M., and Benjakul, S. (2015). Potential application of seafood-derived peptides as bifunctional ingredients, antioxidant-cryoprotectant: A review. J. Funct. Foods 19: 753–764.
Noyer, C., Thomas, O.P., and Becerro, M.A. (2011). Patterns of chemical diversity in the Mediterranean sponge Spongia lamella. PLoS One 6(6): e20844.
Pei, J., Gao, X., Pan, D., Hua, Y., He, J., Liu, Z., and Dang, Y. (2022). Advances in the stability challenges of bioactive peptides and improvement strategies. Curr. Res. Food Sci. 5: 2162–2170.
Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W., and Rawdkuen, S. (2018). Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240: 156–164.
Pirtskhalava, M., Vishnepolsky, B., Grigolava, M., and Managadze, G. (2021). Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals 14(5): 471.
Prestinaci, F., Pezzotti, P., and Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Global Health 109(7): 309–318.
Prior, R.L., Wu, X., and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10): 4290–4302.
Punia, H., Tokas, J., Malik, A., Sangwan, S., and Baloda, S. (2020). Identification and detection of bioactive peptides in dairy products. Molecules 25(15): 3328.
Qin, P., Wang, T., and Luo, Y. (2022). A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 7: 100265.
Raghuraman, H., and Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse functions. Biosci. Rep. 27(4-5): 189–223.
Rajapakse, N., Mendis, E., Jung, W.K., Je, J.Y., and Kim, S.K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38(2): 175–182.
Rapaport, D., and Shai, Y. (1991). Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J. Bio. Chem. 266(35): 23769–23775.
Rizzello, C.G., Lorusso, A., Montemurro, M., and Gobbetti, M. (2016). Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural, and sensory features of white bread. Food Microbiol. 56: 1–13.
Rizzello, C.G., Lorusso, A., Russo, V., Pinto, D., Marzani, B., and Gobbetti, M. (2017). Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int. J. Food Microbio. 241: 252–261.
Rizzello, C.G., Tagliazucchi, D., Babini, E., Rutella, G.S., Taneyo Saa, D.L., and Gianotti, A. (2016). Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J. Funct. Foods 27: 549–569.
Sánchez-Velázquez, O.A., Cuevas-Rodríguez, E.D., Mondor, M., Ribéreau, S., Arcand, Y., Mackie, A., and Hernández-Álvarez, A.J. (2021). Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates. Res. Food Sci.. 4: 93–104.
Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002). Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci., Biotechnol., Biochem. 66(2): 378–384.
Senadheera, T.R.L., Hossain, A., and Shahidi, F. (2023). Marine bioactives and their application in the food industry: A review. Appl. Sci. 13(21): 12088.
Shahidi, F., and Amarowicz, R. (1996). Antioxidant activity of protein hydrolyzates from aquatic species. J. Am. Oil Chem. Soc. 73: 1197–1199.
Shahidi, F., and Zhong, Y. (2015). Measurement of antioxidant activity. J. Funct. Foods 18: 757–781.
Shai, Y. (2004). Mode of action of membrane active antimicrobial peptides. Pept. Sci. 66(4): 236–248.
Sharma, S., Singh, R., and Rana, S. (2011). Bioactive peptides: A review. Int. J. BIOautom. 15(4): 223–250.
Shi, F., Bai, B., Ma, S., Ji, S., and Liu, L. (2016). The inhibitory effects of γ-glutamylcysteine derivatives from fresh garlic on glycation radical formation. Food Chem. 194: 538–544.
Siltari, A., Kivimäki, A.S., Ehlers, P.I., Korpela, R., and Vapaatalo, H. (2012). Effects of milk casein-derived tripeptides on endothelial enzymes in vitro; A study with synthetic tripeptides. Arzneim.-Forsch./Drug Res. 62(10): 477–481.
Singh, T., Choudhary, P., and Singh, S. (2022). Antimicrobial peptides: Mechanism of action. Insights Antimicrob. Pept. 22: 1417.
Singh, U., Kaur, D., Mishra, V., and Krishania, M. (2022). Combinatorial approach to prepare antioxidative protein hydrolysate from corn gluten meal with dairy whey: Preparation, kinetics, nutritional study and cost analysis. LWT 153: 112437.
Steiner, H., Hultmark, D., Engström, A., Bennich, H., and Boman, H. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820): 246–248.
Subramaniyam, R., and Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances. A comparative study.. Int. J. Sci. Nat. 3: 480–486.
Surai, P.F., Earle-Payne, K., and Kidd, M.T. (2021). Taurine as a natural antioxidant: From direct antioxidant effects to protective action in various toxicological models. Antioxidants 10(12): 1876.
Tadesse, S.A., and Emire, S.A. (2020). Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 6(8): e04765.
Tan, H., Su, W., Zhang, W., Wang, P., Sattler, M., and Zou, P. (2018). Recent advances in half-life extension strategies for therapeutic peptides and proteins. Curr. Pharm. Des. 24: 4932–4946.
Timoshnikov, V.A., Selyutina, O.Y., Polyakov, N.E., Didichenko, V., and Kontoghiorghes, G.J. (2022). Mechanistic insights of chelator complexes with essential transition metals: Antioxidant/pro-oxidant activity and applications in medicine. Int. J. Mol. Sci. 23(3): 1247.
Ting, D.S.J., Beuerman, R.W., Dua, H.S., Lakshminarayanan, R., and Mohammed, I. (2020). Strategies in translating the therapeutic potentials of host defense peptides. Front. Immunol. 11: 983.
Toldrá, F., Reig, M., Aristoy, M.C., and Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chem. 267: 395–404.
Tolpeznikaite, E., Bartkevics, V., Skrastina, A., Pavlenko, R., Ruzauskas, M., Starkute, V., and Zokaityte, E. (2023). Submerged and solid-state fermentation of Spirulina with lactic acid bacteria strains: Antimicrobial properties and the formation of bioactive compounds of protein origin. Biology 12(2): 248.
Tyagi, A., Daliri, E.B.M., Ofosu, F.K., Yeon, S.J., and Oh, D.H. (2020). Food-derived opioid peptides in human health: A review. Int. J. Mol. Sci. 21(22): 8825.
Udenigwe, C.C., and Aluko, R.E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 77(1): R11–R24.
Udenigwe, C.C., Adebiyi, A.P., Doyen, A., Li, H., Bazinet, L., and Aluko, R.E. (2012). Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein. Food Chem. 132(1): 468–475.
Ulug, S.K., Keskin, M., and Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 108: 27–39.
Vij, R., Reddi, S., Kapila, S., and Kapila, R. (2016). Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chem. 190: 681–688.
Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., HernándezLedesma, B., and Carrillo, W. (2017). Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the zebrafish larvae model. Plant Foods Hum. Nutr. 72(3): 294–300.
Wang, B., and Li, B. (2017). Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chem. 218: 1–8.
Wang, C., Li, B., and Li, H. (2014). Zn(Ⅱ) chelating with peptides found in sesame protein hydrolysates: Identification of the binding sites of complexes. Food Chem. 165: 594–602.
Wang, R., Zhao, H., Pan, X., Orfila, C., Lu, W., and Ma, Y. (2019). Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 7(5): 1848–1856.
Wijesinghe, A., Kumari, S., and Booth, V. (2022). Conjugates for use in peptide therapeutics: A systematic review and meta-analysis. PLoS One 17(3): e0255753.
Wimley, W.C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 5(10): 905–917.
Wu, H.C., Chen, H.M., and Shiau, C.Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9-10): 949–957.
Wu, J., and Ding, X. (2002). Characterization of inhibition and stability of soy-protein-derived angiotensin Ⅰ-converting enzyme inhibitory peptides. Food Res. Int. 35(4): 367–375.
Xhindoli, D., Pacor, S., Benincasa, M., Scocchi, M., Gennaro, R., and Tossi, A. (2016). The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta 1858(3): 546–566.
Xue, L., Yin, R., Howell, K., and Zhang, P. (2021). Activity and bioavailability of food protein-derived angiotensin-Ⅰ-converting enzyme-inhibitory peptides. Compr. Rev. Food Sci. Food Saf. 20(2): 1150–1187.
Yeo, J.D., and Shahidi, F. (2020). Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem. 315: 126202.
Zaky, A.A., Simal-Gandara, J., Eun, J.B., Shim, J.H., and El-Aty, A.M.A. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 8: 815640.
Zaman, R., Islam, R.A., Ibnat, N., Othman, I., and Zaini, A. (2019). Current strategies in extending half-lives of therapeutic proteins. J. Contr. Rel. 301: 176–189.
Zambrowicz, A., Timmer, M., Polanowski, A., Lubec, G., and Trziszka, T. (2013). Manufacturing of peptides exhibiting biological activity. Amino Acids 44(2): 315–320.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.
Zhang, X., He, H., Xiang, J., Li, B., Zhao, M., and Hou, T. (2021). Selenium-containing soybean antioxidant peptides: Preparation and comprehensive comparison of different selenium supplements. Food Chem. 358: 129888.
Zhao, Y., Zhang, M., Qiu, S., Wang, J., Peng, J., Zhao, P., Zhu, R., Wang, H., Li, Y., Wang, K., Yan, W., and Wang, R. (2016). Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Expres 6: 122.
Zhu, Y., Lao, F., Pan, X., and Wu, J. (2022). Food protein-derived antioxidant peptides: Molecular mechanism, stability, and bioavailability. Biomolecules 12(11): 1622.