PDF (3.2 MB)
Collect
Submit Manuscript
Original Research

Exploring the phytochemical composition and pharmacological effects of fermented turmeric using the isolated strain Lactobacillus rhamnosus FN7

Kai-Jiun Loa,#Sandeep Choudharya,#Chi-Tang HobMin-Hsiung Pana()
Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China
Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA

#These authors contributed equally.

Show Author Information

Abstract

Turmeric (Curcuma longa), widely used in Asia as a spice, preservative, and colorant, contains curcuminoids known for diverse pharmacological benefits, including antimicrobial properties. However, their hydrophobic nature hampers bioavailability. Addressing this, we hypothesized that Lactic Acid Bacteria (LAB) fermentation could enhance curcuminoid content and bioactivity. This study isolated LAB strains to ferment turmeric and investigated the phytochemical and pharmacological outcomes. Twelve LAB strains from various sources were tested for fermenting 3% turmeric in MRS broth. L. rhamnosus FN7 emerged as a robust strain, tolerating turmeric′s antibacterial properties and increasing curcuminoid content and anti-inflammatory effects. Fermented turmeric exhibited higher phenolic and flavonoid contents and improved radical scavenging activity than its non-fermented counterpart. Additionally, L. rhamnosus FN7 survived under simulated gastrointestinal conditions, indicating probiotic potential. Our findings suggest that L. rhamnosus FN7 fermentation significantly boosts turmeric′s biochemical attributes, positioning it as a promising functional food.

Electronic Supplementary Material

Download File(s)
jfb-25-13_ESM1.docx (70.4 KB)
jfb-25-13_ESM2.docx (81.7 KB)
jfb-25-13_ESM3.docx (50.7 KB)
jfb-25-13_ESM4.docx (23.6 KB)
jfb-25-13_ESM5.docx (31 KB)

References

 

Adetuyi, F., and Ibrahim, T. (2014). Effect of fermentation time on the phenolic, flavonoid, and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Niger. Food J. 32(2): 128–137.

 

Allione, A., Bernabei, P., Bosticardo, M., Ariotti, S., Forni, G., and Novelli, F. (1999). Nitric oxide suppresses human T lymphocyte proliferation through IFN-γ-dependent and IFN-γ-independent induction of apoptosis. J. Immunol. 163(8): 4182–4191.

 

Anal, A.K. (2019). Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: A Review. Fermentation. 5(1): 8.

 

Anand, P., Kunnumakkara, A.B., Newman, R.A., and Aggarwal, B.B. (2007). Bioavailability of curcumin: Problems and promises. Mol. Pharm. 4(6): 807–818.

 

Anand, P., Thomas, S.G., Kunnumakkara, A.B., Sundaram, C., Harikumar, K.B., Sung, B., Tharakan, S.T., Misra, K., Priyadarsini, I.K., Rajasekharan, K.N., and Aggarwal, B.B. (2008). Biological activities of curcumin and its analogs (congeners) made by man and mother nature. Biochem. Pharmacol. 76(11): 1590–1611.

 
Axelsson, L. Lactic Acid Bacteria: Classification and Physiology. In: Salminen, S., von Wright, A., and Ouwehand, A. (Ed.). Lactic Acid Bacteria: Microbiological and Functional Aspects, Third Edition. Marcel Dekker Publishers, New York, pp. 1–66.
 

Collins, J.K., Thornton, G., and Sullivan, G.O. (1998). Selection of probiotic strains for human applications. Int. Dairy J. 8(5-6): 487–490.

 

Curiel, J.A., Pinto, D., Marzani, B., Filannino, P., Farris, G.A., Gobbetti, M., and Rizzello, C.G. (2015). Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Fact. 14(1): 1–10.

 

Erkkilä, S., and Petäjä, E. (2000). Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55(3): 297–300.

 
Goldin, B.R., and Gorbach, S.L. (1992). Probiotics for humans. In: Fuller, R. (Ed.). Probiotics. Springer Publishers, Dordrecht, pp. 355–376.
 
Gorbach, S., Doron, S., and Magro, F. (2017). Lactobacillus rhamnosus GG. In: Floch, M.H., Ringel, Y., and Allan Walker, W. (Ed.). The microbiota in gastrointestinal pathophysiology. Academic Press Publishers, Boston, pp. 79–88.
 

Heffernan, C., Ukrainczyk, M., Gamidi, R.K., Hodnett, B.K., and Rasmuson, A.C. (2017). Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process Res. Dev. 21(6): 821–826.

 

Horsley, H., Malone-Lee, J., Holland, D., Tuz, M., Hibbert, A., Kelsey, M., Kupelian, A., and Rohn, J.L. (2013). Enterococcus faecalis subverts and invades the host urothelium in patients with chronic urinary tract infection. PLoS One 8(12): 83637–83650.

 

Jayaprakasha, G.K., Rao, L.J.M., and Sakariah, K.K. (2002). Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem. 50(13): 3668–3672.

 

Jeffrey, M.P., Taggart, H.J., Strap, J.L., Edun, G., and Green-Johnson, J.M. (2020). Milk fermented with Lactobacillus rhamnosus R0011 induces a regulatory cytokine profile in LPS-challenged U937 and THP-1 macrophages. CRFS 3: 51–58.

 

Kankainen, M., Paulin, L., Tynkkynen, S., von Ossowski, I., Reunanen, J., Partanen, P., Satokari, R., Vesterlund, S., Hendrickx, A.P., and Lebeer, S. (2009). Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. U.S.A. 106(40): 17193–17198.

 

Kim, S., Kang, B.-H., Kwon, H.-S., and Kang, J.-H. (2011). Anti-inflammatory and antiallergic activity of fermented turmeric by Lactobacillus johnsonii IDCC 9203. Microb. Biotechnol. Letter. 39(3): 266–273.

 

Kwaw, E., Ma, Y.K., Tchabo, W., Apaliya, M.T., Wu, M., Sackey, A.S., Xiao, L.L., and Tahir, H.E. (2018). Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 250: 148–154.

 

Li, S., Yuan, W., Deng, G.-R., Wang, P., Yang, P., and Aggarwal, B.B. (2011). Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm. Crop. 2: 28–54.

 

Lim, J., Nguyen, T.T.H., Pal, K., Kang, C.G., Park, C., Kim, S.W., and Kim, D. (2022). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chem. 13: 100198.

 

Madamanchi, N.R., Vendrov, A., and Runge, M.S. (2005). Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25(1): 29–38.

 

Marathe, S.A., Ray, S., and Chakravortty, D. (2010). Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in a murine model. PLoS one 5(7): e11511.

 

Martínez-Romero, E., Rodríguez-Medina, N., Beltrán-Rojel, M., Silva-Sánchez, J., Barrios-Camacho, H., Pérez-Rueda, E., and Garza-Ramos, U. (2018). Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae and isolated from plants, animals and humans. Salud Publica De Mexico. 60(1): 56–62.

 

Mauro, C.S.I., Guergoletto, K.B., and Garcia, S. (2016). Development of blueberry and carrot juice blend fermented by Lactobacillus reuteri LR92. Beverages 2(4): 37–48.

 

Mohamed, S.A., Saleh, R.M., Kabli, S.A., and Al-Garni, S.M. (2016). Influence of solid-state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric. Biosci. Biotechnol Biochem. 80(5): 920–928.

 

Mun, S.-H., Kim, S.-B., Kong, R., Choi, J.-G., Kim, Y.-C., Shin, D.-W., Kang, O.- H., and Kwon, D.-Y. (2014). Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules 19(11): 18283–18295.

 

Ng, C.C., Wang, C.Y., Wang, Y.P., Tzeng, W.S., and Shyu, Y.T. (2011). Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata. J. Biosci. Bioeng. 111(3): 289–293.

 

Panche, A.N., Diwan, A.D., and Chandra, S.R. (2016). Flavonoids: an overview. J. Nutr. Sci. 5: e47.

 

Peram, M.R., Jalalpure, S.S., Palkar, M.B., and Diwan, P.V. (2017). Stability studies of pure and mixture form of curcuminoids by reverse phase-HPLC method under various experimental stress conditions. Food Sci. Biotechnol. 26(3): 591–602.

 
Prasad, S., and Aggarwal, B.B. (2011). Turmeric, the golden spice. In: Benzie, I.F.F., and Wachtel-Galor, S. (Ed.). Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton Publisher, CRC Press/Taylor & Francis.
 

Priyadarsini, K.I. (2013). Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des. 19(11): 2093–2100.

 

Rosenthal, A., Pyle, D.L., and Niranjan, K. (1996). Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb. Technol. 19(6): 402–420.

 

Shabana, M.H., Shahy, E.M., Taha, M.M., Mahdy, G.M., and Mahmoud, M.H. (2015). Phytoconstituents from Curcuma longa L. aqueous ethanol extract and its immunomodulatory effect on diabetic infected rats. Egypt. Pharm. J. 14(1): 36–43.

 

Sharifi-Rad, J., El Rayess, Y., Rizk, A.A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocinska, K., Zielinska, D., Salehi, B., Setzer, W.N., Dosoky, N.S., Taheri, Y., El Beyrouthy, M., Martorell, M., Ostrander, E.A., Suleria, H.A.R., Cho, W.C., Maroyi, A., and Martins, N. (2020). Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 11: 1021–1044.

 

Sharma, P., Kashyap, P., and Dhakane, A. (2022). Exploring the antioxidant potential of fermented turmeric pulp: effect of extraction methods and microencapsulation. Prep. Biochem. Biotechnol. 53(8): 968–977.

 

Sharma, R., Garg, P., Kumar, P., Bhatia, S.K., and Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 6(4): 106–126.

 

Suresh, D., Gurudutt, K.N., and Srinivasan, K. (2009). Degradation of bioactive spice compound: curcumin during domestic cooking. Eur. Food Res. Technol. 228(5): 807–812.

 

Surono, I.S., and Hosono, A. (2011). Fermented milk: types and standards of identity. (2nd ed). Elsevier, Amsterdam, pp. 470–476.

 

Yang, L., Guo, H., Li, Y., Meng, X., Yan, L., Zhang, D., Wu, S., Zhou, H., Peng, L., and Xie, Q. (2016). Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways. Sci. Rep. 6(1): 34611–34623.

 

Yong, C.C., Yoon, Y., Yoo, H.S., and Oh, S. (2019). Effect of lactobacillus fermentation on the anti-inflammatory potential of turmeric. J. Microbiol. Biotechnol. 29(10): 1561–1569.

Journal of Food Bioactives
Pages 13-24
Cite this article:
Lo K-J, Choudhary S, Ho C-T, et al. Exploring the phytochemical composition and pharmacological effects of fermented turmeric using the isolated strain Lactobacillus rhamnosus FN7. Journal of Food Bioactives, 2024, 25: 13-24. https://doi.org/10.31665/JFB.2024.18368
Metrics & Citations  
Article History
Copyright
Return