AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (152.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

Introduction to the Special Issue on Machine Learning-Guided Intelligent Modeling with Its Industrial Applications

Xiong Luo1( )Yongqiang Cheng2Zhifang Liao3
School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Faculty of Technology, University of Sunderland, Sunderland, SR6 0DD, UK
School of Computer Science and Engineering, Central South University, Changsha, 410083, China
Show Author Information

References

1

Bertolini M, Mezzogori D, Neroni M, Zammori F. Machine learning for industrial applications: a comprehensive literature review. Expert Syst Appl. 2021;175:114820.

2

Carter A, Imtiaz S, Naterer GF. Review of interpretable machine learning for process industries. Process Saf Environ Prot. 2023;170:647–59.

3

Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn Robot. 2023;3:54–70.

4

Jan Z, Ahamed F, Mayer W, Patel N, Grossmann G, Stumptner M, et al. Artificial intelligence for Industry 4.0: systematic review of applications, challenges, and opportunities. Expert Syst Appl. 2023;216:119456.

5

Cheng G, Yuan X, Yao X, Yan K, Zeng Q, Xie X, et al. Towards large-scale small object detection: survey and benchmarks. IEEE Trans Pattern Anal Mach Intell. 2023;45(11):13467–88.

6

Gao Y, Yin X, He Z, Wang X. A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data. Comput Ind Eng. 2023;176:108936.

7

Yang P, Luo X, Sun J. A simple but effective method for balancing detection and re-identification in multi-object tracking. IEEE Trans Multimedia. 2022;25:7456–68.

8

Kamm S, Veekati SS, Müller T, Jazdi N, Weyrich M. A survey on machine learning based analysis of heterogeneous data in industrial automation. Comput Ind. 2023;149:103930.

9

Zhu Q, Gu L, Lin H. An image fingerprint and attention mechanism based load estimation algorithm for electric power system. Comput Model Eng Sci. 2024;140(1):577–91. doi:10.32604/cmes.2023.043307.

10

Shi W, Zhang S, Zhang S. CAW-YOLO: cross-layer fusion and weighted receptive field-based YOLO for small object detection in remote sensing. Comput Model Eng Sci. 2024;139(3):3209–31. doi:10.32604/cmes.2023.044863.

11

Li C, Liu L, Zhao J, Liu X. LF-CNN: deep learning-guided small sample target detection for remote sensing classification. Comput Model Eng Sci. 2022;131(1):429–44. doi:10.32604/cmes.2022.019202.

12

Zhang L, Gu Y, Peng J. Heterophilic graph neural network based on spatial and frequency domain adaptive embedding mechanism. Comput Model Eng Sci. 2024;139(2):1701–31. doi:10.32604/cmes.2023.045129.

13

Zhang S, Weng L. STPGTN–a multi-branch parameters identification method considering spatial constraints and transient measurement data. Comput Model Eng Sci. 2023;136(3):2635–54. doi:10.32604/cmes.2023.025405.

14

Zhao Z, Luo X, Chen M, Ma L. A survey of knowledge graph construction using machine learning. Comput Model Eng Sci. 2024;139(1):225–57. doi:10.32604/cmes.2023.031513.

15

Liao Z, Zhang B, Huang X, Yu S, Zhang Y. Code reviewer intelligent prediction in open source industrial software project. Comput Model Eng Sci. 2023;137(1):687–704. doi:10.32604/cmes.2023.027466.

16

Zhang Y, Yu Q, Zhang L. User purchase intention prediction based on improved deep forest. Comput Model Eng Sci. 2024;139(1):661–77. doi:10.32604/cmes.2023.044255.

17

Wang H, Cai Y. A fast small-sample modeling method for precision inertial systems fault prediction and quantitative anomaly measurement. Comput Model Eng Sci. 2022;130(1):187–203. doi:10.32604/cmes.2022.018000.

18

Qian H, Wang H, Wang G, Yan Q. Research on condenser deterioration evolution trend based on ANP-EWM fusion health degree. Comput Model Eng Sci. 2024;139(1):679–98. doi:10.32604/cmes.2023.043377.

19

Liu H, Wang W, Liu H, Yi S, Yu Y, Yao X. A degradation type adaptive and deep CNN-based image classification model for degraded images. Comput Model Eng Sci. 2024;138(1):459–72. doi:10.32604/cmes.2023.029084.

20

Liu Z, Wang S, Zhao J, Hao J, Yu F. Role dynamic allocation of human-robot cooperation based on reinforcement learning in an installation of curtain wall. Comput Model Eng Sci. 2024;138(1):473–87. doi:10.32604/cmes.2023.029729.

21

Xu C, Zhu H, Zhu H, Wang J, Zhao Q. Improved RRT* algorithm for automatic charging robot obstacle avoidance path planning in complex environments. Comput Model Eng Sci. 2023;137(3):2567–91. doi:10.32604/cmes.2023.029152.

22

Cheng R, Yin X, Chen L. Machine learning enhanced boundary element method: prediction of gaussian quadrature points. Comput Model Eng Sci. 2022;131(1):445–64. doi:10.32604/cmes.2022.018519.

23

Wang L, Sun J, Luo X, Yang X. Transferable features from 1D-convolutional network for industrial malware classification. Comput Model Eng Sci. 2022;130(2):1003–16. doi:10.32604/cmes.2022.018492.

Computer Modeling in Engineering & Sciences
Pages 7-11
Cite this article:
Luo X, Cheng Y, Liao Z. Introduction to the Special Issue on Machine Learning-Guided Intelligent Modeling with Its Industrial Applications. Computer Modeling in Engineering & Sciences, 2024, 141(1): 7-11. https://doi.org/10.32604/cmes.2024.056214

51

Views

2

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 17 July 2024
Accepted: 19 July 2024
Published: 20 August 2024
© The Author 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return