PDF (3.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

An Overview of In Vitro Biological Neural Networks for Robot Intelligence

Zhe Chen1,2,3Qian Liang2,3,4Zihou Wei2,3,4Xie Chen2,3,4Qing Shi1,2,3,4Zhiqiang Yu2,3,4()Tao Sun2,3,4
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Abstract

In vitro biological neural networks (BNNs) interconnected with robots, so-called BNN-based neurorobotic systems, can interact with the external world, so that they can present some preliminary intelligent behaviors, including learning, memory, robot control, etc. This work aims to provide a comprehensive overview of the intelligent behaviors presented by the BNN-based neurorobotic systems, with a particular focus on those related to robot intelligence. In this work, we first introduce the necessary biological background to understand the 2 characteristics of the BNNs: nonlinear computing capacity and network plasticity. Then, we describe the typical architecture of the BNN-based neurorobotic systems and outline the mainstream techniques to realize such an architecture from 2 aspects: from robots to BNNs and from BNNs to robots. Next, we separate the intelligent behaviors into 2 parts according to whether they rely solely on the computing capacity (computing capacity-dependent) or depend also on the network plasticity (network plasticity-dependent), which are then expounded respectively, with a focus on those related to the realization of robot intelligence. Finally, the development trends and challenges of the BNN-based neurorobotic systems are discussed.

References

1

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, et al. Mastering the game of go without human knowledge. Nature. 2017;550(7676):354–359.

2

Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, et al. Grandmaster level in starcraft ⅱ using multi-agent reinforcement learning. Nature. 2019;575(7782):350–354.

3

Mei X, Lee H-C, Diao K-y, Huang M, Lin B, Liu C, Xie Z, Ma Y, Robson PM, Chung M, et al. Artificial intelligence–enabled rapid diagnosis of patients with covid-19. Nat Med. 2020;26(8):1224–1228.

4
Goertzel B, Pennachin C. Artificial general intelligence. Springer; 2007. vol. 2.
5
Bear M, Connors B, Paradiso MA. Neuroscience: Exploring the brain, enhanced edition: Exploring the brain. Jones & Bartlett Learning; 2020.
6

Drubach D. The brain explained. Pearson; 2000.

7

Rousselet GA, Thorpe SJ, Fabre-Thorpe M. How parallel is visual processing in the ventral pathway? Trends Cogn Sci. 2004;8(8):363–370.

8

Teller Amado S, Estévez Priego E, Granell C, Tornero D, Andilla i Salla J, Olarte OE, Loza Álvarez P, Arenas À, Soriano i Fradera J. Spontaneous functional recovery after focal damage in neuronal cultures. eNeuro. 2020;7(num. 1):ENEURO.0254-19.2020.

9

Wilson M. Six views of embodied cognition. Psychon Bull Rev. 2002;9(4):625–636.

10

Marois R, Ivanoff J. Capacity limits of information processing in the brain. Trends Cogn Sci. 2005;9(6):296–305.

11

Bing Z, Meschede C, Röhrbein F, Huang K, Knoll AC. A survey of robotics control based on learning-inspired spiking neural networks. Front Neurorobot. 2018;12:35.

12

Marković D, Mizrahi A, Querlioz D, Grollier J. Physics for neuromorphic computing. Nat Rev Phys. 2020;2(9):499–510.

13

Ghosh-Dastidar S, Adeli H. Spiking neural networks. Int J Neural Syst. 2009;19(04):295–308.

14

Subbulakshmi Radhakrishnan S, Sebastian A, Oberoi A, Das S, Das S. A biomimetic neural encoder for spiking neural network. Nat Commun. 2021;12(1):Article 2143.

15

Schliebs S, Kasabov N. Evolving spiking neural network–A survey. Evol Syst. 2013;4(2):87–98.

16

Furber S. Large-scale neuromorphic computing systems. J Neural Eng. 2016;13(5):051001.

17

Dayan P, Abbott LF. Book review: Theoretical neuroscience: Computational and mathematical modeling of neural systems. J Cogn Neurosci. 2003;15(1):154–155.

18

Warwick K. Implications and consequences of robots with biological brains. Ethics Inf Technol. 2010;12(3):223–234.

19

Kim E, Jeon S, An H-K, Kianpour M, Yu S-W, Kim J-y, Rah J-C, Choi H. A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. Sci Adv. 2020;6(39):Article eabb5696.

20

Wei Z, Sun T, Shimoda S, Chen Z, Chen X, Wang H, Huang Q, Fukuda T, Shi Q. Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. Lab Chip. 2022;22(5):1006–1017.

21

Wang X-s, Gruenstein EI. Mechanism of synchronized Ca2+ oscillations in cortical neurons. Brain Res. 1997;767(2):239–249.

22

Vogt AK, Wrobel G, Meyer W, Knoll W, Offenhäusser A. Synaptic plasticity in micropatterned neuronal networks. Biomaterials. 2005;26(15):2549–2557.

23

Isomura T, Kotani K, Jimbo Y. Cultured cortical neurons can perform blind source separation according to the free-energy principle. PLoS Comput Biol. 2015;11(12):Article e1004643.

24

Shahaf G, Marom S. Learning in networks of cortical neurons. J Neurosci. 2001;21(22):8782–8788.

25

Le Feber J, Stegenga J, Rutten WL. The effect of slow electrical stimuli to achieve learning in cultured networks of rat cortical neurons. PLoS One. 2010;5(1):Article e8871.

26

Eytan D, Brenner N, Marom S. Selective adaptation in networks of cortical neurons. J Neurosci. 2003;23(28):9349–9356.

27

Ruaro ME, Bonifazi P, Torre V. Toward the neurocomputer: Image processing and pattern recognition with neuronal cultures. IEEE Trans Biomed Eng. 2005;52(3):371–383.

28

Feinerman O, Rotem A, Moses E. Reliable neuronal logic devices from patterned hippocampal cultures. Nat Phys. 2008;4(12):967–973.

29

Dranias MR, Ju H, Rajaram E, VanDongen AM. Short-term memory in networks of dissociated cortical neurons. J Neurosci. 2013;33(5):1940–1953.

30

Ju H, Dranias MR, Banumurthy G, VanDongen AM. Spatiotemporal memory is an intrinsic property of networks of dissociated cortical neurons. J Neurosci. 2015;35(9):4040–4051.

31

Isomura T, Friston K. In vitro neural networks minimise variational free energy. Sci Rep. 2018;8(1):Article 16926.

32

Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107.

33

Barral J, Reyes AD. Synaptic scaling rule preserves excitatory–inhibitory balance and salient neuronal network dynamics. Nat Neurosci. 2016;19(12):1690–1696.

34

Wang L, Ma L, Yang J, Wu J. Human somatosensory processing and artificial somatosensation. Cyborg Bionic Syst. 2021;2021:Article 9843259.

35
Warwick K, Nasuto SJ, Becerra VM, Whalley BJ. Experiments with an in-vitro robot brain. In: Computing with instinct. Springer; 2011. p. 1–15.
36

Warwick K, Xydas D, Nasuto SJ, Becerra VM, Hammond MW, Downes J, Marshall S, Whalley BJ. Controlling a mobile robot with a biological brain. Def Sci J. 2010;60(1):5–14.

37
DeMarse TB, Dockendorf KP. Adaptive flight control with living neuronal networks on microelectrode arrays. Paper presented at: Proceedings 2005 IEEE International Joint Conference on Neural Networks, IEEE; 2005 Jul 31–Aug 4; Montreal, QC, Canada. vol. 3:p. 1548–1551.
38

Novellino A, D’Angelo P, Cozzi L, Chiappalone M, Sanguineti V, Martinoia S. Connecting neurons to a mobile robot: An in vitro bidirectional neural interface. Comput Intell Neurosci. 2007;2007:Article 12725.

39

DeMarse TB, Wagenaar DA, Blau AW, Potter SM. The neurally controlled animat: Biological brains acting with simulated bodies. Auton Robot. 2001;11(3):305–310.

40

Li Y, Sun R, Zhang B, Wang Y, Li H. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence. PLoS One. 2015;10(5):Article e0127452.

41

Tessadori J, Bisio M, Martinoia S, Chiappalone M. Modular neuronal assemblies embodied in a closed-loop environment: Toward future integration of brains and machines. Front Neural Circuits. 2012;6:99.

42

Kagan BJ, Kitchen AC, Tran NT, Habibollahi F, Khajehnejad M, Parker BJ, Bhat A, Rollo B, Razi A, Friston KJ. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron. 2022;110:1–18.

43

Yada Y, Yasuda S, Takahashi H. Physical reservoir computing with force learning in a living neuronal culture. Appl Phys Lett. 2021;119(17):173701.

44

Bisio M, Pimashkin A, Buccelli S, Tessadori J, Semprini M, Levi T, Colombi I, Gladkov A, Mukhina I, Averna A, et al. Closed-loop systems and in vitro neuronal cultures: Overview and applications. Adv Neurobiol. 2019;22:351–387.

45
Hobert O. Neurogenesis in the nematode Caenorhabditis elegans. In: WormBook: The online review of C. elegans biology internet. Wormbook; 2018.
46

Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–541.

47

Squire L, Berg D, Bloom FE, Du Lac S, Ghosh A, Spitzer NC. Fundamental neuroscience. Academic Press; 2012.

48

Koch C, Segev I. The role of single neurons in information processing. Nat Neurosci. 2000;3(11):1171–1177.

49

Abbott LF, Nelson SB. Synaptic plasticity: Taming the beast. Nat Neurosci. 2000;3(11):1178–1183.

50

Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods. 1980;2(1):19–31.

51

Kaech S, Banker G. Culturing hippocampal neurons. Nat Protoc. 2006;1(5):2406–2415.

52

Thomas Jr C, Springer P, Loeb G, Berwald-Netter Y, Okun L. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74(1):61–66.

53

Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8(2):83–94.

54

Li Y, Sun R, Wang Y, Li H, Zheng X. A novel robot system integrating biological and mechanical intelligence based on dissociated neural network-controlled closed-loop environment. PLoS One. 2016;11(11):Article e0165600.

55

Nikolić D, Häusler S, Singer W, Maass W. Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol. 2009;7(12):Article e1000260.

56

Wagenaar DA, Madhavan R, Pine J, Potter SM. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci. 2005;25(3):680–688.

57

Li Y, Zhou W, Li X, Zeng S, Liu M, Luo Q. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays. Biosens Bioelectron. 2007;22(12):2976–2982.

58

Hamilton F, Graham R, Luu L, Peixoto N. Time-dependent increase in network response to stimulation. PLoS One. 2015;10(11):Article e0142399.

59

Tanaka Y, Isomura T, Shimba K, Kotani K, Jimbo Y. Neurogenesis enhances response specificity to spatial pattern stimulation in hippocampal cultures. IEEE Trans Biomed Eng. 2016;64(11):2555–2561.

60

Friston K. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 2010;11(2):127–138.

61

Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

62

Akiyama Y, Nakayama A, Nakano S, Amiya R, Hirose J. An electrical stimulation culture system for daily maintenance-free muscle tissue production. Cyborg Bionic Syst. 2021;2021:Article 9820505.

63

Wagenaar DA, Pine J, Potter SM. Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J Neurosci Methods. 2004;138(1-2):27–37.

64

Maximov A, Pang ZP, Tervo DG, Südhof TC. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J Neurosci Methods. 2007;161(1):75–87.

65

Zhang C, Zhang Y, Wang W, Xi N, Liu L. A manta ray-inspired biosyncretic robot with stable controllability by dynamic electric stimulation. Cyborg Bionic Syst. 2022;2022:Article 9891380.

66

Barral J, Wang X-J, Reyes AD. Propagation of temporal and rate signals in cultured multilayer networks. Nat Commun. 2019;10(1):Article 3969.

67

Mason M, Simpson A, Mahaut-Smith M, Robinson H. The interpretation of current-clamp recordings in the cell-attached patch-clamp configuration. Biophys J. 2005;88(1):739–750.

68
Marty A, Neher E. Tight-seal whole-cell recording. In: Single-channel recording. Springer; 1995. p. 31–52.
69

Deisseroth K. Optogenetics. Nat Methods. 2011;8(1):26–29.

70

Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412.

71

Bovetti S, Fellin T. Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Methods. 2015;241:66–77.

72

Fong M-f, Newman JP, Potter SM, Wenner P. Upward synaptic scaling is dependent on neurotransmission rather than spiking. Nat Commun. 2015;6(1):Article 6339.

73

Ellis-Davies GC. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat Methods. 2007;4(8):619–628.

74

Feinerman O, Segal M, Moses E. Signal propagation along unidimensional neuronal networks. J Neurophysiol. 2005;94(5):3406–3416.

75

Kato-Negishi M, Onoe H, Ito A, Takeuchi S. Rod-shaped neural units for aligned 3d neural network connection. Adv Healthc Mater. 2017;6(15):1700143.

76

Honegger T, Scott MA, Yanik MF, Voldman J. Electrokinetic confinement of axonal growth for dynamically configurable neural networks. Lab Chip. 2013;13(4):589–598.

77

Feinerman O, Segal M, Moses E. Identification and dynamics of spontaneous burst initiation zones in unidimensional neuronal cultures. J Neurophysiol. 2007;97(4):2937–2948.

78

Mahmud M, Pulizzi R, Vasilaki E, Giugliano M. Qspike tools: A generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Front Neuroinform. 2014;8:26.

79

Anastassiou CA, Perin R, Buzsáki G, Markram H, Koch C. Cell type- and activity-dependent extracellular correlates of intracellular spiking. J Neurophysiol. 2015;114(1):608–623.

80

Wilson SB, Emerson R. Spike detection: A review and comparison of algorithms. Clin Neurophysiol. 2002;113(12):1873–1881.

81

Rey HG, Pedreira C, Quiroga RQ. Past, present and future of spike sorting techniques. Brain Res Bull. 2015;119:106–117.

82

Yamamoto H, Moriya S, Ide K, Hayakawa T, Akima H, Sato S, Kubota S, Tanii T, Niwano M, Teller S, et al. Impact of modular organization on dynamical richness in cortical networks. Sci Adv. 2018;4(11):Article eaau4914.

83

Torigoe M, Islam T, Kakinuma H, Fung CCA, Isomura T, Shimazaki H, Aoki T, Fukai T, Okamoto H. Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality. Nat Commun. 2021;12(1):Article 5712.

84

Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73(5):862–885.

85

Renault R, Sukenik N, Descroix S, Malaquin L, Viovy J-L, Peyrin J-M, Bottani S, Monceau P, Moses E, Vignes M. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One. 2015;10(4):Article e0120680.

86

Wagenaar DA, Pine J, Potter SM. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 2006;7(1):1–18.

87

Xie C, Lin Z, Hanson L, Cui Y, Cui B. Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol. 2012;7(3):185–190.

88

Kornreich BG. The patch clamp technique: Principles and technical considerations. J Vet Cardiol. 2007;9(1):25–37.

89

Mathes C. Qpatch: The past, present and future of automated patch clamp. Expert Opin Ther Targets. 2006;10(2):319–327.

90

Fertig N, Blick RH, Behrends JC. Whole cell patch clamp recording performed on a planar glass chip. Biophys J. 2002;82(6):3056–3062.

91

Shew WL, Bellay T, Plenz D. Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity. J Neurosci Methods. 2010;192(1):75–82.

92

Takayama Y, Moriguchi H, Kotani K, Jimbo Y. Spontaneous calcium transients in cultured cortical networks during development. IEEE Trans Biomed Eng. 2009;56(12):2949–2956.

93

Opitz T, De Lima AD, Voigt T. Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro. J Neurophysiol. 2002;88(5):2196–2206.

94

Peterka DS, Takahashi H, Yuste R. Imaging voltage in neurons. Neuron. 2011;69(1):9–21.

95

Chemla S, Chavane F. Voltage-sensitive dye imaging: Technique review and models. J Physiol Paris. 2010;104(1-2):40–50.

96

Nakajima K, Fischer I. Reservoir Computing. Springer; 2021.

97

Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019;115:100–123.

98

Hafizovic S, Heer F, Ugniwenko T, Frey U, Blau A, Ziegler C, Hierlemann A. A CMOS-based microelectrode array for interaction with neuronal cultures. J Neurosci Methods. 2007;164(1):93–106.

99

Dockendorf KP, Park I, He P, Príncipe JC, DeMarse TB. Liquid state machines and cultured cortical networks: The separation property. Biosystems. 2009;95(2):90–97.

100
Ortman RL, Venayagamoorthy K, Potter SM. Input separability in living liquid state machines. In: International conference on adaptive and natural computing algorithms. Springer; 2011. p. 220–229.
101

George JB, Abraham GM, Singh K, Ankolekar SM, Amrutur B, Sikdar SK. Input coding for neuro-electronic hybrid systems. Biosystems. 2014;126:1–11.

102

Albers J, Offenhäusser A. Signal propagation between neuronal populations controlled by micropatterning. Front Bioeng Biotechnol. 2016;4:46.

103

Forró C, Thompson-Steckel G, Weaver S, Weydert S, Ihle S, Dermutz H, Aebersold MJ, Pilz R, Demkó L, Vörös J. Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens Bioelectron. 2018;122:75–87.

104

Peyrin J.-M, Deleglise B, Saias L, Vignes M, Gougis P, Magnifico S, Betuing S, Pietri M, Caboche J, Vanhoutte P, et al. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip. 2011;11(21):3663–3673.

105

Yamamoto H, Matsumura R, Takaoki H, Katsurabayashi S, Hirano-Iwata A, Niwano M. Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution. Appl Phys Lett. 2016;109(4):Article 043703.

106

Yoshida S, Kato-Negishi M, Takeuchi S. Assembly and connection of micropatterned single neurons for neuronal network formation. Micromachines. 2018;9(5):235.

107

Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA. Connecting brains to robots: An artificial body for studying the computational properties of neural tissues. Artif Life. 2000;6(4):307–324.

108
Shkolnik A. Neurally controlled simulated robot: Applying cultured neurons to handle an approach/avoidance task in real time, and a framework for studying learning in vitro. In: Potter, SM, Lu, J. Dept. of Mathematics and Computer Science: Emory University, Atlanta; 2003. p. 66–70.
109

Martinoia S, Sanguineti V, Cozzi L, Berdondini L, van Pelt J, Tomas J, Le Masson G, Davide F. Towards an embodied in vitro electrophysiology: The neurobit project. Neurocomputing. 2004;58:1065–1072.

110

Pizzi RM, Rossetti D, Cino G, Marino D, Vescovi AL, Baer W. A cultured human neural network operates a robotic actuator. Biosystems. 2009;95(2):137–144.

111
Aaser P, Knudsen M, Huse Ramstad O, van de Wijdeven R, Nichele S, Sandvig I, Tufte G, Bauer US, Halaas Ø, Hendseth S, et al. Towards making a cyborg: A closed-loop reservoir-neuro system. Paper presented at: European Conference on Artificial Life (ECAL); 2017; Lyon, France.
112

Bakkum DJ, Chao ZC, Gamblen P, Ben-Ary G, Shkolnik AG, DeMarse TB, Potter SM. Embodying cultured networks with a robotic drawing arm. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2996–2999.

113
Bakkum DJ, Chao ZC, Potter SM. Adaptive goal-directed behavior in embodied cultured networks: Living neuronal networks and a simulated model. Paper presented at: 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE; 2007 May 2–5; Kohala Coast, HI. p. 46–49.
114

Bakkum DJ, Chao ZC, Potter SM. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task. J Neural Eng. 2008;5(3):310.

115

Caporale N, Dan Y. Spike timing–dependent plasticity: A hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.

116
Masumori A, Maruyama N, Sinapayen L, Mita T, Frey U, Bakkum D, Takahashi H, Ikegami T. Emergence of sense-making behavior by the stimulus avoidance principle: Experiments on a robot behavior controlled by cultured neuronal cells. Paper presented at: ECAL 2015: The 13th European Conference on Artificial Life. MIT Press; 2015. p. 373–380.
117

de Melo BA, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3d bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60–76.

118

Koroleva A, Deiwick A, El-Tamer A, Koch L, Shi Y, Estévez-Priego E, Ludl A-A, Soriano J, Guseva D, Ponimaskin E, et al. In vitro development of human ipsc-derived functional neuronal networks on laser-fabricated 3D scaffolds. ACS Appl Mater Interfaces. 2021;13(7):7839–7853.

119

Anderson WA, Bosak A, Hogberg HT, Hartung T, Moore MJ. Advances in 3D neuronal microphysiological systems: Towards a functional nervous system on a chip. In Vitro Cell Dev Biol. 2021;57(2):191–206.

120

Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, Hopkins AM, Omenetto FG, Haydon PG, Kaplan DL. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci USA. 2014;111(38):13811–13816.

121

Cui J, Wang H, Shi Q, Sun T. Pulsed microfluid force-based on-chip modular fabrication for liver lobule-like 3D cellular models. Cyborg Bionic Syst. 2021;2021:9871396.

122

Sun T, Shi Q, Huang Q, Wang H, Xiong X, Hu C, Fukuda T. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures. Acta Biomater. 2018;66:272–281.

123

Shin H, Jeong S, Lee J-H, Sun W, Choi N, Cho I-J. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun. 2021;12(1):1–18.

124

Soscia DA, Lam D, Tooker AC, Enright HA, Triplett M, Karande P, Peters SK, Sales AP, Wheeler EK, Fischer NO. A flexible 3-dimensional microelectrode array for in vitro brain models. Lab Chip. 2020;20(5):901–911.

125

Kamimura HA, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: Mechanisms and the potential of multimodal stimulation for neuronal function assessment. Front Phys. 2020;8:150.

126

Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun. 2022;13(1):Article 493.

127

Pelkonen A, Mzezewa R, Sukki L, Ryynänen T, Kreutzer J, Hyvärinen T, Vinogradov A, Aarnos L, Lekkala J, Kallio P, et al. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosens Bioelectron. 2020;168:112553.

128

Hong N, Nam Y. Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro. Nat Commun. 2020;11(1):Article 6313.

129

Park MU, Bae Y, Lee K-S, Song JH, Lee S-M, Yoo K-H. Collective dynamics of neuronal activities in various modular networks. Lab Chip. 2021;21(5):951–961.

130

Ming Y, Abedin MJ, Tatic-Lucic S, Berdichevsky Y. Microdevice for directional axodendritic connectivity between micro 3D neuronal cultures. Microsyst Nanoeng. 2021;7(1):Article 67.

131
Chen Z, Sun T, Wei Z, Chen X, Shimoda S, Fukuda T, Huang Q, Shi Q. A real-time neuro-robot system for robot state control. Paper presented at: 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE; 2022 July 17–22; Guiyang, China. p. 124–129.
132

Obaid A, Hanna M-E, Wu Y-W, Kollo M, Racz R, Angle MR, Müller J, Brackbill N, Wray W, Franke F, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv. 2020;6(12):Article eaay2789.

133

Uehlin JP, Smith WA, Pamula VR, Pepin EP, Perlmutter S, Sathe V, Rudell JC. A single-chip bidirectional neural interface with high-voltage stimulation and adaptive artifact cancellation in standard CMOS. IEEE J Solid State Circuits. 2020;55(7):1749–1761.

Cyborg and Bionic Systems
Article number: 0001
Cite this article:
Chen Z, Liang Q, Wei Z, et al. An Overview of In Vitro Biological Neural Networks for Robot Intelligence. Cyborg and Bionic Systems, 2023, 4: 0001. https://doi.org/10.34133/cbsystems.0001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return